
A Fairness-aware Load Balancing Strategy in Multi-
Tenant Clouds

Yu-Teng Chen1 and Kuan-Chou Lai1

1 National Taichung University of Education, Taichung, Taiwan. R.O.C.
kclai@mail.ntcu.edu.tw

Abstract. Load balancing is an important issue in multi-tenant clouds to ensure
the load balanced on computing resources belonged to different tenants. A con-
tainerized multi-tenant environment could be managed by Kubernetes using dif-
ferent scheduling policies. For improving scheduling performance of Kubernetes,
Apache Yunikorn project provides the fine-grain control by hierarchical resource
queues to enhance the resource utilization. However, the fairness-aware load bal-
ance among tenants is missed in Yunikorn, which may result in poor resource
utilization in some tenants. This paper proposes a fairness-aware load balance
policy for multi-tenant environments to keep the balance of resources allocated
in different tenants, and also the balance of the utilizations of different resources
in a computing node. Experimental results show the superiority of the proposed
policy.

Keywords: Fairness, Load Balance, Multi-tenants, Yunikorn, Resource Alloca-
tion.

1 Introduction

Adopting container technique to provide services is popular in cloud computing envi-
ronments. In such environments, tenants could easily deploy containerized applications
on these clouds. In general, Kubernetes [2, 5] is a high-availability distributed orches-
tration platform to maintain containers. Although Kubernetes allocates resources to ten-
ants, the fairness issue of the resource allocation policy in Kubernetes still could be
improved in the multi-tenant environment.

Apache Yunikorn [1] provides a fine-grained control over resources among tenants,
which is missed in the Kubernetes. Apache Yunikorn adopts the hierarchical resource
queues and the access control list (ACL) to manage resources among different tenants.
The scheduling decision in Apache Yunikorn considers the specific order of applica-
tions and nodes; therefore, Apache Yunikorn has better scheduling performance be-
cause its scheduling cycle is shorter than that of Kubernetes.

However, neither Yunikorn nor Kubernetes considers both the load balance among
nodes and the fairness among tenants. The fairness among tenants [4, 7] is an important
issue to avoid resource conflict in the scheduling policy. In the meantime, neither
Yunikorn nor Kubernetes considers the load balance among clusters. For example, the

2

NodeResourceFit procedure in the Kubernetes scheduler has three policies: most, least
and balance. The most and least policies calculate the score based on average resource
utilization and make decision. However, average resource utilization couldn’t indicate
the utilization gap among heterogeneous resources resulting in the resource waste. The
utilization gap occurs when certain resources are depleted when other resources are
plentiful in one computing node. Although the balance policy may reduce the utilization
gap among heterogeneous resources in a node, but it doesn’t consider the load balance
among nodes even among clusters. The similar problem is also found in Apache
Yunikorn. So, the schedulers in Apache Yunikorn and Kubernetes couldn’t provide an
efficient load balance approach in containerized clusters.

In order to improve the fairness and load-balance in multi-tenant environments, this
work proposes a fairness-aware load balancing (FALB) strategy to minimize the dif-
ference of quantities of heterogenous resources among tenants, the utilization gap [3]
of heterogeneous resources in a node and the deviation between heterogeneous resource
utilizations among nodes.

In the rest of this paper, the fairness problem and the load balance issue are described
first; and the pseudo code of the FALB is introduced. Experimental results are shown
and analyzed finally.

2 Related works

Apache Yunikorn [1] adopts hierarchical queues to the fine-grained control and its
scheduling performance is better than the Kubernetes one. However, current Yunikorn
doesn’t provide fairness among tenants. For evaluating fairness, Wang et al. [7] pro-
posed the global dominant resource. But the indicator doesn’t consider the elapsed time
corresponding to this resource. Another previous work [6] keeps the fairness shared
among tenants by computing resource quota. However, this previous work doesn’t pro-
pose an indicator to solve the load balance. Pfreundschuh et al. [8] considers the profil-
ing execution time of applications via neural network. With the profiling with neural
network, this work indicates that the execution time of applications is predictable. The
proposed DDRF approach in this work includes the execution time of the applications.
To enhance the scheduling performance, the Apache Yunikorn project is proposed, and
its scheduling strategies are simple. Carrión et al. [2] and Hilman et al. [4] describe the
different scheduling objectives and they list indicators of each works such as CPU,
memory, GPU. Chung et al. [3] proposed a method to minimize the resource waste. But
it doesn’t improve the load balance among nodes. Menouer et al. [5] adopted the Tech-
nique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to achieve ob-
jectives including CPU utilization, memory utilization and the number of running con-
tainer. However, it didn’t reduce resource waste and the load-balance among nodes.
Ramasamy et al. [6] proposed a priority queue scheduling algorithm and fair share strat-
egies. Tenant’s application is in high priority when the fair share is lower than the fair
share quota. The algorithm focused on maintaining fair share among tenants but the
resource utilizations did not be considered.

3

3 Fairness-aware Load Balancing Strategy

This section introduces the proposed fairness-aware load balancing strategy mecha-
nism. This work adopts a profiling system [8] to capture the application execution time
for supporting the scheduling decision making. In this work, containerized applications
have different execution time by using different parameters to estimate the expected
execution time.

Apache Yunikorn is a cloud-native, efficient, and cost-saving resource scheduling
system. It could handle the resource scheduling for running big data and machine learn-
ing applications on the Kubernetes platform. Apache Yunikorn adopts the hierarchical
resource queue structure and the access control list (ACL) to provide the fine-grained
control, so administrators could build customized hierarchical queues to filter tenants
and manage resources. Apache Yunikorn manages the resource accessed by tenants
according to ACLs. When a new application is submitted, Apache Yunikorn accepts
the application when the ACL is matched the permission.

The system components of Yunikorn are as follows:

• Scheduler interface
The scheduler interface defines the grpc protocol between the scheduler core and the

Kubernetes shim. Common constraints for Yunikorn are also defined here.
• Scheduler core

The scheduler core encapsulates the whole scheduling algorithms, such as applica-
tion sorting, node sorting and queue sorting. The scheduler core is responsible for mak-
ing the scheduling decision according to the container allocation requests. There are
three sorting policies for applications: FIFO, fair and stateAware. The policies of node-
sorting include fair and bin packing approaches.
• Scheduler shim

Kubernetes shim is responsible for communicating with Kubernetes. Kubernetes
shim watches events in Kubernetes clusters and translates Kubernetes events into cor-
responding information. Requests for resource allocation and the status of Kubernetes
objects are translated based on the definitions of grpc protocol in the scheduler inter-
face; and then the information is transmitted to the scheduler core.

Fig. 1. System Architecture

For evaluating fairness among tenants, this work adopts the resource requirement
dominant factor (RRDF) to present the dominant factor of the resource requirement.

4

Every tenant’s RRDF is the sum of the product of resource requirements in each appli-
cation request within the same tenant. The proposed approach keeps the balance of
every tenant’s RRDF in order to avoid that some tenants occupy excessive resources in
a long time. Assume that there is a tenant set U = {tenant!	ϵ	the	cluster} and
𝑎𝑝𝑝(𝐶𝑃𝑈,𝑀𝑒𝑚, 𝐸𝑥𝑒	𝑡𝑖𝑚𝑒) represents the request of resource requirement of an appli-
cation, where 𝑟"#$ is CPU request,	𝑟%&% is the memory request, and	𝑟&'& is the execu-
tion time. The variable, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑()) is 1 when the application is scheduled. Eq. (1)
sums up the production of each handled request to compute certain tenant’s RRDF. The
FALB uses Eq. (2) to find out the tenant with the least RRDF and try to schedule the
tenant’s application to increase the tenant’s RRDF.

𝑅𝑅𝐷𝐹*&+(+* = ∑ (𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 ∗ ∏ 𝑟,∈())())∈*&+(+*) , 𝑤ℎ𝑒𝑟𝑒 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑=1 if 𝑎𝑝𝑝 𝑖𝑠
𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑; otherwise, it is 0. (1)

 𝑡𝑒𝑛𝑎𝑛𝑡. = 𝐴𝑅𝐺	𝑀𝑖𝑛*&+(+*/$(𝑅𝑅𝐷𝐹*&+(+*)) (2)

For example, a tenant submits three applications and they are scheduled. If each ap-
plication request 1 CPU and 1KB memory, the RRDF of the tenant is 3*10^6
(3*1000(vcore)* 1000(bytes)). Load-balance minimizes the utilization gap in a node
by minimizing the largest difference between any two resource requirements, as shown
in Eq. (3) and minimizes the resource deviation among nodes, as shown in Eq. (4) Re-
source waste happens when there is a large utilization gaps and some resources are
exhausted. For measuring resource waste in a node, Eq. (3) calculates the max utiliza-
tion gap in a node. In the meanwhile, the FALB utilizes the deviation to measure inter-
node load balance when calculating the utilization gap in a node. For improving the
load balance of nodes within a cluster, Eq. (4) presents the max deviation of resource
utilizations of heterogeneous resources in a cluster. FALB considers the utilization gap
and the deviation to reduce the resource waste within a node, and improves load-bal-
ance among nodes. For example, there is a cluster that CPU deviation is higher than
memory one. The proposed FALB mechanism would try to reduce the CPU deviation
and to avoid increasing the utilization gap in a node. Eq. (5) finds the mean utilization
of the node. This work finds the least mean utilization of a node, the minimal utilization
gap in a node and the deviation of resource utilizations when there is a new request
from applications, as shown in Eq. (6), (7) and (8). However, there would be a trade-
off between Eq. (7) and (8) in some situations. This work adopts the TOPSIS (Tech-
nique for Order of Preference by Similarity to Ideal Solution) which is a multi-criteria
decision analysis method to choose the best node after calculating the distance from
current choice to best choice, as shown in Eq. (9).
•

𝑈𝐺. = |𝑀𝑎𝑥,∈+01&!(𝑢,2) −𝑀𝑖𝑛,∈+01&!(𝑢,3)|,where take two resource types as exam-
ple, but could be extended to multiple resource types. (3)

𝜎, = 𝑀𝑎𝑥	,∈+01&5(𝜎,),𝑤ℎ𝑒𝑟𝑒 𝜎 𝑖𝑠 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛	of	nodes (4)

 𝑀𝑈. = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(∑ 6*.7.8(*&1	96(+*.*:"
"();.*:"

	,/+01&!) (5)

5

 𝑀𝑈%.+ = 𝑀𝑖𝑛.∈+01&5(𝑀𝑈.) (6)

 𝑈𝐺%.+ = 𝑀𝑖𝑛./+01&5(𝑈𝐺.),where UG is the utilization gap in 𝑛𝑜𝑑𝑒 𝑖 (7)

 𝜎%.+ = 𝑀𝑖𝑛.∈+01&5(𝜎,,.) (8)

 𝑛𝑜𝑑𝑒=&5* = 𝐴𝑅𝐺	𝑀𝑎𝑥.∈+01&5(𝑇𝑂𝑃𝑆𝐼𝑆(𝑀𝑈,𝑈𝐺, 𝜎)) (9)

The following is an example to illustrate above equations. For example, there are
two nodes (one has 1 CPU,1GB memory, one has 2 CPU, 1GB memory) in the cluster.
The both initial mean resource utilizations are 0. When a new application request (0.5
CPU, 0.2 GB memory) is submitted, assigning the application to the specific node
makes utilization gaps and standard deviations in the FALB. Utilization gaps of nodes
would be 30% (i.e., (0.5/1 – 0.2/1) *100%) and 10% (i.e., (0.5/2-0.2/1) *100%) sepa-
rately. Their standard deviations are 25 and 10. In the FALB approach, Algorithm 1
finds the application from the tenant with the minimal RRDF. For assigning the appli-
cation to a node, Algorithm 2 chooses a best node based on the trade-off between utili-
zation gaps, standard deviation, and the mean node’s utilization. Finally, FALB assigns
the tenant’s application according to the starting time and node ID by TOPSIS.

Algorithm 1: Fairness in FALB

Inputs:
- apps, the applications in the cluster.
- tenants, who submit applications in cluster

Outputs:
- Application ID, which is from tenant with the minimal RRDF

1:Initialize every 𝑅𝑅𝐷𝐹!"#$#! with 0
2:For tenant in U:
3: For app in apps:
4: if app belongs to tenant and app is scheduled:
5: 𝑅𝑅𝐷𝐹!"#$#!+= ∏ 𝑟%∈$''
6:tenantID := ARG 𝑀𝐼𝑁!"#$#!∈((𝑅𝑅𝐷𝐹!"#$#!)
7:Initialize heaps H, which order is increasing order of submitted
timestamp of applications.
8:Put tenant’s unscheduled apps into H separately.
9:return the top of H

6

Algorithm 2: Load-balance in FALB

Inputs:
- nodes, nodes in cluster allow to run the application
- req, request of the submitted application

Outputs:
- node ID, the node to run the submitted application

1:nodes:= find nodes allowing request to run
2:for node 𝜖 nodes:
3: 𝑈𝐺#)*" := Eq. (3) computes the utilization gap if the app runs on
the node
4: 𝑀𝑈#)*" := Eq. (5) calculates mean utilizations of the node
5: 𝜎#)*" := Eq. (4) finds the standard deviation if the app runs on the
node
6: Put 𝑈𝐺#)*" , 𝑀𝑈#)*" , 𝜎#)*" to 𝑈𝐺#)*"+, 𝑀𝑈#)*"+, 𝜎#)*"+
7: 𝑀𝑈#)*"+` , 𝑈𝐺#)*"+` , 𝜎#)*"+` :=normalize 𝑀𝑈#)*"+, 𝑈𝐺#)*"+, 𝜎#)*"+
and then divide them with 3 separately.
10: # Based on 𝑀𝑈#)*"+` , 𝑈𝐺#)*"+` , 𝜎#)*"+`
11:𝐴-(. , 𝐴(/. , 𝐴0.:=finding the minimal values Eq. (6)(7)(8) # best point
12:𝐴-(1 , 𝐴(/1 , 𝐴01:=finding the max values # worst point
13:for n in nodes:
14: the point (𝑤𝑎𝑖𝑡#` , 𝑈𝐺#` , 𝜎#`) when choosing node n
15: append Euclidean distance between the point and best point to
𝑆𝑀.
16: append Euclidean distance between the point and worst point to
𝑆𝑀1
17: append 𝑆𝑀#

1/(𝑆𝑀#
1 + 𝑆𝑀#

.) to RC
18:return the node with the minimal RC value

4 Experiment Results

This section introduces the experiment to show the performance improvement of
FALB. Table 1 shows the machine specification in this experiment. The whole system
consists of ten workstations and the node10 is the master node for Apache Yunikorn.
Yunikorn on the master node assigns tenants’ containerized applications to the slave
workstations.

7

Table 1. machine specification

Node number Machine Specification
Product Name CPU Memory

node1 IBM System x 16 36G
node2 IBM System x 16 42G
node3 IBM System x 16 32G
node4 BladeCenter HS23 8 32G
node5 BladeCenter HS23 8 32G
node6 ProLiant DL360 G6 16 36G
node7 ProLiant DL360 G6 16 30G
node8 ProLiant DL360 G6 16 36G
node9 ProLiant DL360p Gen8 24 32G

node10 Pro E500 G6_WS720T 16 40G

Table 2 shows the software information. Apache Yunikorn is responsible to sched-

ule the pod which is basic scheduling unit in Kubernetes. Pods sharing the same appli-
cation ID belong to the same application. A pod contains multiple containers and
Docker is a well-known container runtime to provide operations of containers. Kuber-
netes is a container management platform, and a pod is a basic scheduling unit. Helm
chart is the tool to manage configuration and developers could deploy applications to
Kubernetes by helm.

Table 2. software version

Software Version
Apache Yunikorn 1.1.0
Docker 20.10.17
Kubernetes 1.21.0-00
Ubuntu 18.04
Helm 3.9.0

Table 3 indicates the resource requirement of four tenants who submits 50 applica-

tions separately. Each application is encapsulated in a pod. User1 and user2 prefer CPU.
The others prefer memory.

Table 3. tenants’ application information

tenants CPU memory(G) execution(s)
user1 2 8 50
user2 1 4 200
user3 8 2 50
user4 4 1 200

8

There are two application scenarios: the stream scenario submits applications of ten-
ants sequentially after deploying Yunikorn; In the batch scenario, Yunikorn deploys all
application when all of them are submitted.

Table 4 indicates what objective strategies adopt. The mean utilization is the main
scheduling objective in the original Yunikorn. The Fairness-aware Yunikorn (FA-YK),
FALB-2 and FALB-3 implement the Algorithm 1 to maintain the RRDF. Comparing
to the original Yunikorn and FA-YK, FALB series use TOPSIS to find the best node.
The mean utilization and the utilization gap are the objectives in FALB-2 and FALB-
3. Additionally, FALB-3 objectives include the resource deviation.

Table 4. active objectives among strategies

Strategies DDRF Mean utilization Utilization gap Deviation
Original Yunikorn x
FA-YK x x
FALB-2 x x x
FALB-3 x x x x

Fig. 2 indicates the total execution time of FALB series is better than the execution

times of Yunikorn and the FA-YK. In the both scenario, two phenomena describe the
benefits from DDRF and the effect of objectives. Maintaining tenants’ DDRF reduces
the specific resource exhaustion when a lot of same kind applications are submitted.
Objectives in FALB series make the total execution time shorter than the execution
time of Yunikorn and FA-YK.

Fig. 2. Total execution time with different strategies

In the stream scenario, the FALB provides better fairness among tenants. Comparing
to the FALB in Fig. 4, original Yunikorn in the Fig. 3 did not try to keep every tenant’s
RRDF close.

9

Fig. 3. fairness in stream scenario (original)

Fig. 4. fairness in stream scenario (adopting FALB)

Fig. 5 indicates the max resource deviations among original Yunikorn and FALB
are between 5 and 28. Although the max resource deviation of the FALB is higher than
28, the total execution of FALB is better than that of the original one. The original
Yunikorn without DDRF causes other tenants’ applications to wait when a large num-
ber of applications from a tenant consume certain resources. Moreover, this also in-
crease the resource waste.

Fig. 5. deviations in the stream scenario

10

Fig. 6 shows the mean resource utilizations in the stream scenario. The memory
utilization with FALB is stably higher than that of original Yunikorn after 270 seconds.
FALB considering RRDF avoids scheduling a lot of same tenant’s applications to ex-
haust specific resource. Comparing to the FALB, the original Yunikorn leads that other
tenants’ applications are waiting. The original Yunikorn increases the waiting time of
application and the total execution time.

Fig. 6. mean utilizations of nodes in stream scenario

Fig. 7. utilization gaps in stream scenario (original)

Fig. 7 and Fig. 8 show the utilization gaps by different strategies. A small utilization
gap of a node is better when the node can’t run new applications. Fig. 8 indicates aver-
age median value of utilization gaps is around 47. Compared to Fig. 7, the RRDF mech-
anism avoids the tenants’ application waiting and some utilization gaps are reduced.
Fig. 9 shows that the FALB keeps the difference of every tenant’s RRDF close. In
hence, the curves of different tenants would be close each other. No tenant owns too
many resource quantities to violate the fairness.

11

Fig. 8. utilization gaps in stream scenario (adopting FALB)

Fig. 9. fairness in batch scenario (adopting FALB)

5 Conclusions

This study improves the fairness by keeping the utilizations of tenants’ RRDF close.
After keeping the fairness among tenants, FALB provides the reduction of utilization
gaps in a node, the decreament of max. deviation of resources in clusters to reduce the
execution time. FALB evaluates nodes by TOPSIS in order to find a node to allocate
an application. The results show that total execution time of the FALB is better than
that of original Yunikorn.

6 Acknowledgement

This study was sponsored by the Ministry of Science and Technology, Taiwan, R.O.C.,
under contract numbers: MOST 111-2221-E-142-004-, and by the “Intelligent Manu-
facturing Research Center” (iMRC) from the Featured Areas Research Center Program
within the framework of the Higher Education Sprout Project by the Ministry of Edu-
cation, Taiwan, R.O.C.

12

References

1. Apache Yunikorn [Online]. (2022, December 8) Available: https://yunikorn.apache.org
2. Carrión, C. “Kubernetes scheduling: Taxonomy, ongoing issues and challenges,” ACM

Computing Surveys, vol. 55, no. 7, pp. 1-37 2022.
3. Chung, W. C., Wu, T. L., Lee, Y. H., Huang, K. C., Hsiao, H. C., and Lai, K. C, “Minimizing

resource waste in heterogeneous resource allocation for data stream processing on clouds,”
Applied Sciences, vol 11, no. 1, pp. 149, 2020.

4. Hilman, M. H., Rodriguez, M. A., and Buyya, R. “Multiple workflows scheduling in multi-
tenant distributed systems: A taxonomy and future directions,” ACM Computing Surveys
(CSUR), vol. 53, no. 1, pp.1-39, 2020.

5. Menouer, T. ”KCSS: Kubernetes container scheduling strategy,” The Journal of Supercom-
puting, vol. 77, no. 5,pp. 4267-4293, 2021.

6. Ramasamy, M., Balakrishnan, M., and Thangaraj, C.” Priority Queue Scheduling Approach
for Resource Allocation in Containerized Clouds,” In Inventive Computation Technologies
4, Springer International Publishing, 2020, pp.758-765.

7. Wang, W., Liang, B., and Li, B. ”Multi-resource fair allocation in heterogeneous cloud com-
puting systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 10,pp.
2822-2835, 2015.

8. Pfreundschuh, S., Brown, P. J., Kummerow, C. D., Eriksson, P.,and Norrestad, T.”GPROF-
NN: A neural network based implementation of the Goddard Profiling Algorithm,” Atmos-
pheric Measurement Techniques Discussions, vol. 15, no. 17, pp.5033-5060, 2022.

