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Abstract. Spatial keyword queries find extensive applications in geographic 

information systems like Facebook and Instagram. The collective spatial 

keyword query (CSKQ) plays a crucial role among the various types of queries. 

This query aims to retrieve a set of Points of Interest (POIs) that collectively 

cover the specified keywords while being in proximity to both the query 

location and other objects. To evaluate the spatial cost of a set of POIs in CSKQ, 

we introduce the Edge-Based Collective Nine-Area Tree Index (EBCNA). By 

incorporating edge information and POIs into the NA-tree structure, the 

EBCNA offers a comprehensive solution. All edge information, including POIs, 

is stored in the leaf nodes, and each edge links to its adjacent edges via pointers. 

This design enables direct retrieval of edge information and POIs without 

repeatedly trailing back to the root node. Through a comparative analysis, we 

have demonstrated our proposed method's superior performance compared to 

the existing one. 
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1   Introduction 

With the growing popularization of geo-positioning technologies and geo-location 

services, many spatial-textual objects are used in many applications (e.g., Twitter and 

Facebook). Those geo-tagging services combine the location information with textual 

descriptions. Through the aforementioned development, some services efficiently 

process spatial keywords query (SKQ) that concern textual relevance and spatial 

closeness between POIs (Points of Interest) and the query location. 

The spatial road network belongs to the category of geographic graphs, wherein 

nodes are situated along road networks [1–3]. A road network can be represented as a 

graph comprising a collection of vertices (or nodes), edges, and weights (or network 

distances) assigned to these edges. In this context, each vertex signifies an endpoint or 

a road intersection within the network, while each edge represents a road segment. 
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Furthermore, the weight associated with each edge corresponds to the respective road 

segment's length (or network distance). Additionally, when considering a set of 

spatial-textual objects, namely points of interest (POIs) located on the road network, 

each POI possesses both a spatial location and a textual description. 

The collective spatial keyword query (CSKQ) is an essential variant of spatial 

keyword queries. The purpose of CSKQ is to find a set of objects that collectively 

incorporate the query keywords, and those objects are near the query location and 

close to each other object [4-5]. Namely, we must evaluate the keyword matching and 

the spatial proximity of query location and objects. For instance, we issue a query 

with keywords {School, Park, Restaurant}, and we have an object o1 with 

keyword {School} and an object o2 with keywords {Park, Restaurant}. An example 

of a keyword matching approach of CSKQ is {o1, o2}, which collectively covers the 

query keywords. Besides the keyword-matching approach, spatial proximity also 

needs to be concerned. 

In the literature, Gao et al. introduced a renowned algorithm for addressing the 

collective spatial keyword query (CSKQ), employing the CCAM index structure for 

storing points of interest (POIs) on the road network [4]. Building upon the CCAM 

index structure [6], the authors proposed algorithms to tackle the CSKQ problem. The 

first algorithm, Network Expansion Based (NEB), identifies the nearest objects 

encompassing the queried keywords relative to the query location. These objects are 

subsequently utilized as the result set. The closeness of the result set is evaluated 

using a cost function. The goal of NEB is to find an upper bound of the cost used by 

the other algorithms to find a better answer. Their exact algorithm, called Sliding 

Window (SW) algorithm, is to find the optimal result set with the lowest cost 

calculated by the cost function. In their proposed algorithms, upon issuing a CSKQ, 

the process necessitates the traversal of numerous edges. In order to retrieve the 

requisite edge information, an iterative search of the B+-tree structure from the root 

node becomes imperative. However, this recurrent search operation significantly 

escalates the overall search time. 

Therefore, to reduce the search time, this paper presents the edge-based collective 

nine-area tree (EBCNA) index structure to shorten the search time in the leaf node and 

enhance the efficiency of collective spatial keyword query processing on road 

networks. By incorporating edge information and POIs into the NA-tree structure [7], 

the EBCNA offers a comprehensive solution. All edge information, including POIs, is 

stored in the leaf nodes, and each edge links to its adjacent edges via pointers. This 

design enables direct retrieval of edge information and POIs without repeatedly 

trailing back to the root node. 

The rest of this paper is organized as follows. Section 2 presents the proposed 

algorithms. Section 3 evaluates the performance efficiency. Section 4 presents the 

concluding remarks of the study. 

2   The Proposed Algorithms 

In the proposed algorithms, we use an ECBNA (edge-based collective nine-area tree) 
index, a revised version of the NA-tree proposed by Chang et al. [7], to build our road 



network model. We proposed the basic expanding algorithm and the nearest keyword 
first exact algorithm to process CSKQ. 

2.1 Edge-Based Collective Nine-Area Tree 

We define the road networks as an undirected graph G = (V, E), where V is a set of 
vertices and E is a set of edges. The vertex v in V is denoted by v = (vid, pos), where 
vid is the vertex ID number and pos coordinates the vertex in 2D space. Every vertex 
v in V corresponds to the junctions of edges and the endpoints of edges on the road 
network. The edge e in E is represented as e = (eid, vs, ve, length, obj). eid is the ID 
number of the edge. vsє V is the start point of the edge. ve є V is the endpoint of the 
edge. length is the length of the edge. obj is the spatial object which contains both 
spatial and textual information belonging to the edge. 

An NA-tree [7] is a structure according to data location and is organized by spatial 
numbers. The spatial space is decomposed into four equal-sized regions, and an NA-
tree might have nine children according to the decomposition of the spatial space, as 
shown in Figure 1. Figure 2 shows a running example of the road network. The length 
of the edge between two vertexes is marked in red color, and the black circle indicates 
an object with spatial keywords and the corresponding distance to the vertex with the 
lower vertex number along the edge. For example, object o3 is associated with the 
keyword c, and the distance from vertex v2 to o3 is 6.  

 

Fig. 1. NA-tree 
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Fig. 2. A running example of the road network 



Inspired by the NA-tree representation approach, we use two endpoints of a line 

segment to represent line segments. Figure 3 shows the corresponding EBCNA index 

structure. For example, the edge v2v3 is located at the fifth child of the NA-tree, 

according to Figures 1 and 2. In Figure 3, the fifth leaf node stores the information 

about the edge from vertex v2 to vertex v3 and the edge from vertex v3 to vertex v2. 

The second column indicates the length of the edge. The third column indicates the 

object lists along the edge. The last column contains a reference to the other leaf node 

that stores information about the adjacent edge connected to the endpoint of the 

current edge. 

 

Fig. 3. The EBCNA index structure 

2.2 The Basic Expanding Algorithm 

We present the basic expanding algorithm to find a result set with a reasonable cost 
function value and to serve as the upper bound of the following exact algorithm. The 
cost function is as follows [4]: Cost(R) = (1 - α) × maxoєV d(q, o) + α × maxoi,ojєV d(oi, 
oj), where R denotes the set of the result objects. maxoєV d(q, o) represents the maximal 
distance between the query point and any object in R. maxoi,ojєV d(oi, oj) represents the 
maximal distance between every two of objects in R. α is a user-defined parameter 
between 0 and 1 to determine the importance between maxoєV d(q, o) and maxoi,ojєV 
d(oi, oj). The Cost(R) function evaluates the spatial cost between the query point and 
the result set R. α is set to 0.5. 

In Figure 2, a triangle on node v2 denotes the CSKQ query q with keywords 
{a, b, c}. Min_Q is a minimal priority queue that keeps objects in the queue based on 
their distances to the query location.  Find_Key is a set that records the query 
keywords. Based on the EBCNA index structure, we expand the road network from 
query q and find the first shortest edge v1v2. The edge v1v2 has one object o2 
containing its keyword b, and the distance = 0 from object o2 to the node with a 
smaller ID, i.e., v1. Thus, we have Find_Key = {a, b, c} - {b} = {a, c} and edge v1v2 



is dequeued from queue Min_Q. We keep the same way to expand the road network 
and find the next shortest edge, v2v3, in queue Min_Q. On edge v2v3, object o1 with 
keyword a is found, and the distance = 8 from object o1 to the node with a smaller 
ID, i.e., v2. Thus, we have Find_Key = {a, c} - {a} = {c} and edge v2v3 is dequeued 
from queue Min_Q. Since there is still one keyword c in set Find_Key, we keep 
expanding the road network and find the next shortest edge v2v4 in queue Min_Q. On 
edge v2v4, object o3 with keyword c is found, and the distance = 6 from object o3 to 
the node with a smaller ID, i.e., vertex v2. Thus, we have Find_Key = {c} - {c} = {}. 
Then, we have the result set R = {o1, o2, o3} and the function Cost(R) = (1-0.5) × d(q, 
o1) + 0.5 ×  d(o1, o3) = 0.5 × 8 + 0.5 × 14 = 11, which can be the upper bound of the 
following exact algorithm. 

 

2.3 The Nearest Keyword First Exact Algorithm 

We propose the nearest keyword first exact algorithm, NKF, to find the optimal result 
set with the lowest function cost. In the first phase, we expand the road network to 
identify objects containing query keywords from the query location. These objects are 
inserted into a minimal priority queue. We then select the first object in the queue as 
the new query point and employ the basic expanding algorithm to obtain the result set. 
The cost function of this initial result set is used as the upper bound. Subsequently, we 
continue to expand the road network, selecting the next object in the queue and 
finding a new result set. We calculate the cost function for this new result set. If the 
calculated cost function is lower than the cost of the basic expanding algorithm, we 
update the current lowest cost function. We repeat this process of expanding the road 
network and finding different result sets until the distance between the discovered 
object and the query location exceeds the current lowest cost function. In the second 
phase, we record the objects with the exact query keywords in the minimal priority 
queue for each query keyword. Next, we find the rest of the combinations and 
calculate their function cost. Finally, the result set with the lowest function cost 
becomes optimal. 

For the same example in Figure 2, a CSKQ q is issued at vertex v2. Figure 4 shows 
the procedure of the first phase. We expand the road network starting from vertex v2, 
the query location. Initially, we trace the shortest edge, v1v2, and discover an object, 
o2, with the keyword b on this edge. Object o2 is inserted into the minimal priority 
queue Min_Q, and the remaining keywords to be found are updated as Find_Key = {a, 
b, c} - b = {a, c}. Next, we employ the basic expanding algorithm from object o2 to 
identify objects close to o2 and collectively contain the keywords {a, c}. 
Consequently, we obtain the first result set, R = {o1, o2, o3}, and compute its 
function cost, which is 0.5 * d(q, o1) + 0.5 * d(o1, o3) = 0.5 * 8 + 0.5 * (8 + 6) = 11 
(i.e., the upper bound), as listed in Step 1 of Table 1. 

Moving forward, we expand the road network again and reset Find_Key to {a, b, 
c}. On the next shortest edge, v2v3, we find object o1 with the keyword a. Object o1 
is added to the Min_Q queue, and Find_Key is updated as {a, b, c} - a = {b, c}, as 
listed in Step 2 of Table 1. We apply the basic expanding algorithm from object o1 
and obtain the result set {o1, o2, o3} with a function cost of 0.5 * d(q, o1) + 0.5 * 
d(o1, o3) = 0.5 * 8 + 0.5 * (8 + 6) = 11. Since the function cost is not lower than the 
current lowest function cost, we continue expanding the road network and reset 
Find_Key to {a, b, c}. 



Following the same approach as above, on edge v2v4, we find object o3 with the 
keyword c and object o4 with the keywords {a, b}, as listed in Step 3 of Table 1. 
Initially, we insert object o3 into the Min_Q queue, and Find_Key is updated as {a, b, 
c} - c = {a, b}. Employing the basic expanding algorithm from object o3, we find the 
result set {o3, o4} with a function cost of 0.5 * d(q, o4) + 0.5 * d(o3, o4) = 5 + 2 = 7. 
Since the function cost of 7 is lower than the current lowest function cost of 11, we 
update the current lowest function cost to 7. Finally, we reset Find_Key to {a, b, c} 
and insert object o4 into the Min_Q queue, resulting in Find_Key being updated as {a, 
b, c} - {a, b} = {c}. In step 4, d(q, o4) = 10 is also not lower than the current lowest 
function cost = 7. The first phase terminates once the distance between the object and 
the query location is equal to or larger than the current lowest function cost. 

o2

o2 o1

o2 o1 o3 o4

o2 o3 o1 o4

 

 

 

 

R = {o1, o2, o3}

Cost(R ) = 11 (Upper bound)

R = {o1, o2, o3}

Cost(R ) = 11

R = {o3, o4}

Cost(R ) = 7

d (q , o4) = 10   7

 Stop  

Fig. 4. The first phase 

Table 1 The steps of the network expansion 

Step Edge Object Keywords Find_Key Result Set R 

1 v1v2 o2 b {a, c} {o1, o2, o3} 
Cost(R) = 11 

2 v2v3 o1 a {b, c} {o1, o2, o3} 
Cost(R) = 11 

3 v2v4 o3 c {a, b} {o3, o4} 
Cost(R) = 7 

4 v2v4 o4 {a, b} c d(q,o4) = 10 ≥ 7 
→ Stop 

In the second phase, we store objects with each query keyword in the Min_Q queue. 
Specifically, objects with keyword a are {o1, o4}, objects with keyword b are {o2, 
o4}, and the object with keyword c is {o3}. We then generate combinations of these 
objects to create a set encompassing all query keywords. Ultimately, we identify the 
result set {o3, o4} with the lowest function cost 7. Hence, the optimal result set is {o3, 
o4}. 

3   Performance Evaluation 

We evaluate the performance efficiency of query time for the collective spatial 

keyword query processing on road networks using the proposed EBCNA index 

structure and the CCAM index structure [4]. We perform our experiment on the 

Oldenburg real road network dataset, which contains 6,105 vertices and 7,035 edges 

at 10,000 * 10,000 (https://users.cs.utah.edu/~lifeifei/SpatialDataset.htm). Each data 



object contains three keywords randomly selected from the datasets with 50 keywords. 

The density of data objects with keywords is set to 0.3. The number of data objects is 

set to 2110. The threshold value of the leaf node in the B+-tree for the CCAM index 

structure is set to 4096 bytes. The threshold value of the leaf node in the NA-tree is 

set to 200. α is set to 0.5 for the cost function. 

First, we compare the query time performance for the proposed expanding 

algorithm utilizing the EBCNA index structure and the NEB algorithm employing the 

CCAM index structure across varying query keywords, ranging from 3 to 5. Table 2 

lists this comparison of the query time. On average, the proposed basic expanding 

algorithm exhibits a 64.6% improvement over the NEB algorithm. It is observed that 

the execution time increases as the number of query keywords increases. Notably, the 

performance of our basic expanding algorithm surpasses that of the NEB algorithm, 

primarily attributable to the distinct data structures employed for real data. This 

discrepancy arises because our EBCNA index structure is an edge-based indexing 

approach, allowing for direct linkage to other edges. Conversely, the CCAM index 

structure is a node-based indexing structure, necessitating repeated returns to the root 

node of the B+-tree during road network expansion. 

 

Table 2 The comparison of the query time (sec) between the proposed basic expanding 

algorithm and the NEB algorithm 

Number of Keywords 3 4 5 

BASIC 0.076 0.077 0.083 

NEB 0.206 0.225 0.230 

% Improvement 63.1% 66.8% 63.9% 

Second, we compare the query time performance for the proposed NKF algorithm 

utilizing the EBCNA index structure and the SW algorithm employing the CCAM 

index structure across varying query keywords, ranging from 3 to 5. Table 3 lists this 

comparison of the query time. On average, the proposed NKF algorithm exhibits a 

94.4% improvement over the SW algorithm. The performance of the proposed NKF 

algorithm is better than the SW algorithm since our NKF algorithm considers not only 

the distance between the query location and objects but also the distance between any 

two objects. The method can reduce the number of objects in the minimal priority 

queue in the first phase. Thus, we can reduce the calculation of combinations in the 

second phase. 

Table 3 The comparison of the query time (sec) between the proposed NFK algorithm 

and the SW algorithm 

Number of Keywords 3 4 5 

NFK 0.904 4.590 16.489 

SW 5.555 1959.956 3619.980 

% Improvement 83.7% 99.8% 99.6% 



4   Conclusions 

This paper introduces the EBCNA index structure to process collective spatial 

keyword queries (CSKQ) efficiently. This edge-based approach divides the road 

network into nine distinct areas and employs two spatial numbers to represent each 

edge. Unlike the node-based approach proposed by Gao et al. [4], the EBCNA 

enables efficient access to spatial objects during the expansion of the road network, 

eliminating the need for repeated returns to the root node. We introduce the basic 

expanding algorithm, which aims to find a result set with an acceptable cost function 

value and is the upper bound for the subsequent exact algorithm. We also propose an 

exact algorithm to deal with the CSKQ problem with the lowest function cost. The 

performance evaluation confirms the superiority of the proposed algorithms over 

existing ones. 
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