
An Efficient Edge-Based Index for Processing

Collective Spatial Keyword Query on Road Networks

Ye-In Chang1, Jun-Hong Shen 2,*, and Sheng-Yang Lin1

1 Department of Computer Science and Engineering, National Sun Yat-Sen University,

Kaohsiung 804, Taiwan
changyi@cse.nsysu.edu.tw, allen9910@hotmail.com

2 Department of Information Management, National United University, Miaoli 360301,

Taiwan

shenjh@nuu.edu.tw

Abstract. Spatial keyword queries find extensive applications in geographic

information systems like Facebook and Instagram. The collective spatial

keyword query (CSKQ) plays a crucial role among the various types of queries.

This query aims to retrieve a set of Points of Interest (POIs) that collectively

cover the specified keywords while being in proximity to both the query

location and other objects. To evaluate the spatial cost of a set of POIs in CSKQ,

we introduce the Edge-Based Collective Nine-Area Tree Index (EBCNA). By

incorporating edge information and POIs into the NA-tree structure, the

EBCNA offers a comprehensive solution. All edge information, including POIs,

is stored in the leaf nodes, and each edge links to its adjacent edges via pointers.

This design enables direct retrieval of edge information and POIs without

repeatedly trailing back to the root node. Through a comparative analysis, we

have demonstrated our proposed method's superior performance compared to

the existing one.

Keywords: Collective spatial keyword query, road network, spatial database.

1 Introduction

With the growing popularization of geo-positioning technologies and geo-location

services, many spatial-textual objects are used in many applications (e.g., Twitter and

Facebook). Those geo-tagging services combine the location information with textual

descriptions. Through the aforementioned development, some services efficiently

process spatial keywords query (SKQ) that concern textual relevance and spatial

closeness between POIs (Points of Interest) and the query location.

The spatial road network belongs to the category of geographic graphs, wherein

nodes are situated along road networks [1–3]. A road network can be represented as a

graph comprising a collection of vertices (or nodes), edges, and weights (or network

distances) assigned to these edges. In this context, each vertex signifies an endpoint or

a road intersection within the network, while each edge represents a road segment.

mailto:mychen@gm.nutc.edu.tw

Furthermore, the weight associated with each edge corresponds to the respective road

segment's length (or network distance). Additionally, when considering a set of

spatial-textual objects, namely points of interest (POIs) located on the road network,

each POI possesses both a spatial location and a textual description.

The collective spatial keyword query (CSKQ) is an essential variant of spatial

keyword queries. The purpose of CSKQ is to find a set of objects that collectively

incorporate the query keywords, and those objects are near the query location and

close to each other object [4-5]. Namely, we must evaluate the keyword matching and

the spatial proximity of query location and objects. For instance, we issue a query

with keywords {School, Park, Restaurant}, and we have an object o1 with

keyword {School} and an object o2 with keywords {Park, Restaurant}. An example

of a keyword matching approach of CSKQ is {o1, o2}, which collectively covers the

query keywords. Besides the keyword-matching approach, spatial proximity also

needs to be concerned.

In the literature, Gao et al. introduced a renowned algorithm for addressing the

collective spatial keyword query (CSKQ), employing the CCAM index structure for

storing points of interest (POIs) on the road network [4]. Building upon the CCAM

index structure [6], the authors proposed algorithms to tackle the CSKQ problem. The

first algorithm, Network Expansion Based (NEB), identifies the nearest objects

encompassing the queried keywords relative to the query location. These objects are

subsequently utilized as the result set. The closeness of the result set is evaluated

using a cost function. The goal of NEB is to find an upper bound of the cost used by

the other algorithms to find a better answer. Their exact algorithm, called Sliding

Window (SW) algorithm, is to find the optimal result set with the lowest cost

calculated by the cost function. In their proposed algorithms, upon issuing a CSKQ,

the process necessitates the traversal of numerous edges. In order to retrieve the

requisite edge information, an iterative search of the B+-tree structure from the root

node becomes imperative. However, this recurrent search operation significantly

escalates the overall search time.

Therefore, to reduce the search time, this paper presents the edge-based collective

nine-area tree (EBCNA) index structure to shorten the search time in the leaf node and

enhance the efficiency of collective spatial keyword query processing on road

networks. By incorporating edge information and POIs into the NA-tree structure [7],

the EBCNA offers a comprehensive solution. All edge information, including POIs, is

stored in the leaf nodes, and each edge links to its adjacent edges via pointers. This

design enables direct retrieval of edge information and POIs without repeatedly

trailing back to the root node.

The rest of this paper is organized as follows. Section 2 presents the proposed

algorithms. Section 3 evaluates the performance efficiency. Section 4 presents the

concluding remarks of the study.

2 The Proposed Algorithms

In the proposed algorithms, we use an ECBNA (edge-based collective nine-area tree)
index, a revised version of the NA-tree proposed by Chang et al. [7], to build our road

network model. We proposed the basic expanding algorithm and the nearest keyword
first exact algorithm to process CSKQ.

2.1 Edge-Based Collective Nine-Area Tree

We define the road networks as an undirected graph G = (V, E), where V is a set of
vertices and E is a set of edges. The vertex v in V is denoted by v = (vid, pos), where
vid is the vertex ID number and pos coordinates the vertex in 2D space. Every vertex
v in V corresponds to the junctions of edges and the endpoints of edges on the road
network. The edge e in E is represented as e = (eid, vs, ve, length, obj). eid is the ID
number of the edge. vsє V is the start point of the edge. ve є V is the endpoint of the
edge. length is the length of the edge. obj is the spatial object which contains both
spatial and textual information belonging to the edge.

An NA-tree [7] is a structure according to data location and is organized by spatial
numbers. The spatial space is decomposed into four equal-sized regions, and an NA-
tree might have nine children according to the decomposition of the spatial space, as
shown in Figure 1. Figure 2 shows a running example of the road network. The length
of the edge between two vertexes is marked in red color, and the black circle indicates
an object with spatial keywords and the corresponding distance to the vertex with the
lower vertex number along the edge. For example, object o3 is associated with the
keyword c, and the distance from vertex v2 to o3 is 6.

Fig. 1. NA-tree

4

6
8

10

8

10

Fig. 2. A running example of the road network

Inspired by the NA-tree representation approach, we use two endpoints of a line

segment to represent line segments. Figure 3 shows the corresponding EBCNA index

structure. For example, the edge v2v3 is located at the fifth child of the NA-tree,

according to Figures 1 and 2. In Figure 3, the fifth leaf node stores the information

about the edge from vertex v2 to vertex v3 and the edge from vertex v3 to vertex v2.

The second column indicates the length of the edge. The third column indicates the

object lists along the edge. The last column contains a reference to the other leaf node

that stores information about the adjacent edge connected to the endpoint of the

current edge.

Fig. 3. The EBCNA index structure

2.2 The Basic Expanding Algorithm

We present the basic expanding algorithm to find a result set with a reasonable cost
function value and to serve as the upper bound of the following exact algorithm. The
cost function is as follows [4]: Cost(R) = (1 - α) × maxoєV d(q, o) + α × maxoi,ojєV d(oi,
oj), where R denotes the set of the result objects. maxoєV d(q, o) represents the maximal
distance between the query point and any object in R. maxoi,ojєV d(oi, oj) represents the
maximal distance between every two of objects in R. α is a user-defined parameter
between 0 and 1 to determine the importance between maxoєV d(q, o) and maxoi,ojєV
d(oi, oj). The Cost(R) function evaluates the spatial cost between the query point and
the result set R. α is set to 0.5.

In Figure 2, a triangle on node v2 denotes the CSKQ query q with keywords
{a, b, c}. Min_Q is a minimal priority queue that keeps objects in the queue based on
their distances to the query location. Find_Key is a set that records the query
keywords. Based on the EBCNA index structure, we expand the road network from
query q and find the first shortest edge v1v2. The edge v1v2 has one object o2
containing its keyword b, and the distance = 0 from object o2 to the node with a
smaller ID, i.e., v1. Thus, we have Find_Key = {a, b, c} - {b} = {a, c} and edge v1v2

is dequeued from queue Min_Q. We keep the same way to expand the road network
and find the next shortest edge, v2v3, in queue Min_Q. On edge v2v3, object o1 with
keyword a is found, and the distance = 8 from object o1 to the node with a smaller
ID, i.e., v2. Thus, we have Find_Key = {a, c} - {a} = {c} and edge v2v3 is dequeued
from queue Min_Q. Since there is still one keyword c in set Find_Key, we keep
expanding the road network and find the next shortest edge v2v4 in queue Min_Q. On
edge v2v4, object o3 with keyword c is found, and the distance = 6 from object o3 to
the node with a smaller ID, i.e., vertex v2. Thus, we have Find_Key = {c} - {c} = {}.
Then, we have the result set R = {o1, o2, o3} and the function Cost(R) = (1-0.5) × d(q,
o1) + 0.5 × d(o1, o3) = 0.5 × 8 + 0.5 × 14 = 11, which can be the upper bound of the
following exact algorithm.

2.3 The Nearest Keyword First Exact Algorithm

We propose the nearest keyword first exact algorithm, NKF, to find the optimal result
set with the lowest function cost. In the first phase, we expand the road network to
identify objects containing query keywords from the query location. These objects are
inserted into a minimal priority queue. We then select the first object in the queue as
the new query point and employ the basic expanding algorithm to obtain the result set.
The cost function of this initial result set is used as the upper bound. Subsequently, we
continue to expand the road network, selecting the next object in the queue and
finding a new result set. We calculate the cost function for this new result set. If the
calculated cost function is lower than the cost of the basic expanding algorithm, we
update the current lowest cost function. We repeat this process of expanding the road
network and finding different result sets until the distance between the discovered
object and the query location exceeds the current lowest cost function. In the second
phase, we record the objects with the exact query keywords in the minimal priority
queue for each query keyword. Next, we find the rest of the combinations and
calculate their function cost. Finally, the result set with the lowest function cost
becomes optimal.

For the same example in Figure 2, a CSKQ q is issued at vertex v2. Figure 4 shows
the procedure of the first phase. We expand the road network starting from vertex v2,
the query location. Initially, we trace the shortest edge, v1v2, and discover an object,
o2, with the keyword b on this edge. Object o2 is inserted into the minimal priority
queue Min_Q, and the remaining keywords to be found are updated as Find_Key = {a,
b, c} - b = {a, c}. Next, we employ the basic expanding algorithm from object o2 to
identify objects close to o2 and collectively contain the keywords {a, c}.
Consequently, we obtain the first result set, R = {o1, o2, o3}, and compute its
function cost, which is 0.5 * d(q, o1) + 0.5 * d(o1, o3) = 0.5 * 8 + 0.5 * (8 + 6) = 11
(i.e., the upper bound), as listed in Step 1 of Table 1.

Moving forward, we expand the road network again and reset Find_Key to {a, b,
c}. On the next shortest edge, v2v3, we find object o1 with the keyword a. Object o1
is added to the Min_Q queue, and Find_Key is updated as {a, b, c} - a = {b, c}, as
listed in Step 2 of Table 1. We apply the basic expanding algorithm from object o1
and obtain the result set {o1, o2, o3} with a function cost of 0.5 * d(q, o1) + 0.5 *
d(o1, o3) = 0.5 * 8 + 0.5 * (8 + 6) = 11. Since the function cost is not lower than the
current lowest function cost, we continue expanding the road network and reset
Find_Key to {a, b, c}.

Following the same approach as above, on edge v2v4, we find object o3 with the
keyword c and object o4 with the keywords {a, b}, as listed in Step 3 of Table 1.
Initially, we insert object o3 into the Min_Q queue, and Find_Key is updated as {a, b,
c} - c = {a, b}. Employing the basic expanding algorithm from object o3, we find the
result set {o3, o4} with a function cost of 0.5 * d(q, o4) + 0.5 * d(o3, o4) = 5 + 2 = 7.
Since the function cost of 7 is lower than the current lowest function cost of 11, we
update the current lowest function cost to 7. Finally, we reset Find_Key to {a, b, c}
and insert object o4 into the Min_Q queue, resulting in Find_Key being updated as {a,
b, c} - {a, b} = {c}. In step 4, d(q, o4) = 10 is also not lower than the current lowest
function cost = 7. The first phase terminates once the distance between the object and
the query location is equal to or larger than the current lowest function cost.

o2

o2 o1

o2 o1 o3 o4

o2 o3 o1 o4

R = {o1, o2, o3}

Cost(R) = 11 (Upper bound)

R = {o1, o2, o3}

Cost(R) = 11

R = {o3, o4}

Cost(R) = 7

d (q , o4) = 10 7

 Stop

Fig. 4. The first phase

Table 1 The steps of the network expansion

Step Edge Object Keywords Find_Key Result Set R

1 v1v2 o2 b {a, c} {o1, o2, o3}
Cost(R) = 11

2 v2v3 o1 a {b, c} {o1, o2, o3}
Cost(R) = 11

3 v2v4 o3 c {a, b} {o3, o4}
Cost(R) = 7

4 v2v4 o4 {a, b} c d(q,o4) = 10 ≥ 7
→ Stop

In the second phase, we store objects with each query keyword in the Min_Q queue.
Specifically, objects with keyword a are {o1, o4}, objects with keyword b are {o2,
o4}, and the object with keyword c is {o3}. We then generate combinations of these
objects to create a set encompassing all query keywords. Ultimately, we identify the
result set {o3, o4} with the lowest function cost 7. Hence, the optimal result set is {o3,
o4}.

3 Performance Evaluation

We evaluate the performance efficiency of query time for the collective spatial

keyword query processing on road networks using the proposed EBCNA index

structure and the CCAM index structure [4]. We perform our experiment on the

Oldenburg real road network dataset, which contains 6,105 vertices and 7,035 edges

at 10,000 * 10,000 (https://users.cs.utah.edu/~lifeifei/SpatialDataset.htm). Each data

object contains three keywords randomly selected from the datasets with 50 keywords.

The density of data objects with keywords is set to 0.3. The number of data objects is

set to 2110. The threshold value of the leaf node in the B+-tree for the CCAM index

structure is set to 4096 bytes. The threshold value of the leaf node in the NA-tree is

set to 200. α is set to 0.5 for the cost function.

First, we compare the query time performance for the proposed expanding

algorithm utilizing the EBCNA index structure and the NEB algorithm employing the

CCAM index structure across varying query keywords, ranging from 3 to 5. Table 2

lists this comparison of the query time. On average, the proposed basic expanding

algorithm exhibits a 64.6% improvement over the NEB algorithm. It is observed that

the execution time increases as the number of query keywords increases. Notably, the

performance of our basic expanding algorithm surpasses that of the NEB algorithm,

primarily attributable to the distinct data structures employed for real data. This

discrepancy arises because our EBCNA index structure is an edge-based indexing

approach, allowing for direct linkage to other edges. Conversely, the CCAM index

structure is a node-based indexing structure, necessitating repeated returns to the root

node of the B+-tree during road network expansion.

Table 2 The comparison of the query time (sec) between the proposed basic expanding

algorithm and the NEB algorithm

Number of Keywords 3 4 5

BASIC 0.076 0.077 0.083

NEB 0.206 0.225 0.230

% Improvement 63.1% 66.8% 63.9%

Second, we compare the query time performance for the proposed NKF algorithm

utilizing the EBCNA index structure and the SW algorithm employing the CCAM

index structure across varying query keywords, ranging from 3 to 5. Table 3 lists this

comparison of the query time. On average, the proposed NKF algorithm exhibits a

94.4% improvement over the SW algorithm. The performance of the proposed NKF

algorithm is better than the SW algorithm since our NKF algorithm considers not only

the distance between the query location and objects but also the distance between any

two objects. The method can reduce the number of objects in the minimal priority

queue in the first phase. Thus, we can reduce the calculation of combinations in the

second phase.

Table 3 The comparison of the query time (sec) between the proposed NFK algorithm

and the SW algorithm

Number of Keywords 3 4 5

NFK 0.904 4.590 16.489

SW 5.555 1959.956 3619.980

% Improvement 83.7% 99.8% 99.6%

4 Conclusions

This paper introduces the EBCNA index structure to process collective spatial

keyword queries (CSKQ) efficiently. This edge-based approach divides the road

network into nine distinct areas and employs two spatial numbers to represent each

edge. Unlike the node-based approach proposed by Gao et al. [4], the EBCNA

enables efficient access to spatial objects during the expansion of the road network,

eliminating the need for repeated returns to the root node. We introduce the basic

expanding algorithm, which aims to find a result set with an acceptable cost function

value and is the upper bound for the subsequent exact algorithm. We also propose an

exact algorithm to deal with the CSKQ problem with the lowest function cost. The

performance evaluation confirms the superiority of the proposed algorithms over

existing ones.

Acknowledgments. This research was supported by grants MOST 105-2221-E-110-

084, MOST 107-2221-E-110-064, and NSTC110-2410-H-239-019 from the National

Science and Technology Council, Taiwan.

References

1. Chang, Y.-I., Tsai, M.-H., Wu, X.-L.: An edge-based algorithm for spatial query processing

in real-life road networks. Int. Journal of Modeling and Optimization, vol. 5, no. 4, pp. 308–

312 (2015)

2. Fang, H., Zhao, P., Sheng, V. S., Wu, J., Xu, J., Liu, A., Cui, Z.: Effective spatial keyword

query processing on road networks Databases Theory and Applications, Lecture Notes in

Computer Science, vol. 9093, pp. 194–206 (2015)

3. Kuang, X., Zhao, P., Sheng, V. S., Wu, J., Li, Z., Liu, G., Cui, Z.: TK-SK: textual-restricted

k spatial keyword query on road networks. Databases Theory and Applications, Lecture

Notes in Computer Science, vol. 9093, pp. 167–179 (2015)

4. Gao, Y., Zhao, J., Zheng, B., Chen, G.: Efficient collective spatial keyword query

processing on road networks. IEEE Trans. on Intelligent Transportation Systems, vol. 17, no.

2, pp. 469–480 (2016)

5. Xue, J., Wu, C., Zhao B., Hu, Y.: Collective spatial keyword query on time dependent road

networks. In: Proceedings of Tenth International Conference on Advanced Cloud and Big

Data, pp. 7–12 (2022)

6. Shekhar, S., Liu, D.-R.: CCAM: a connectivity-clustered access method for networks and

network computations. IEEE Trans. on Knowledge and Data Engineering, vol. 9, no. 1, pp.

102–119 (1997)

7. Chang, Y.-I., Liao, C.-H., Chen, H.-L.: NA-trees: a dynamic index for spatial data. Journal

of Information Science and Engineering, vol. 19, no. 1, pp. 103–139 (2003)

