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Abstract. The computing power and storage requirements of the In-
ternet of Things (IoT) are likely to increase substantially in the fu-
ture years. Because of the rapid development of both machine learning
(ML) and the Internet of Things (IoT), vast volumes of data created
by edge devices such as smartphones, laptops, and artificial intelligence
(AI) speakers have been widely used to train ML models. In this study,
we used a cluster-based Blockchain method in the Multi-Access Edge
Computing (MEC, also known as Mobile Edge Computing) for markets
and technological services. We describe a generalized stochastic block
model (SBM) model for edge computing applications based on the pro-
posed taxonomy. These mobile edge wireless devices (WD) provide ef-
ficient resource allocation in mobile network situations.In our studies,
we compared the approximate solutions obtained by the SBM to those
generated by the cluster-based Blockchain algorithm. However, the high
latency and low scalability of traditional blockchain systems limit mo-
bile transactions on the public blockchain. To reduce the consumption
of competitive mobile transactions created by linear sequencing blocks,
reconstructed blockchain systems have been developed. This study’s use
of cluster-based blockchain systems provides speedy confirmation and
great scalability without significantly compromising security.

Keywords: Machine learning (ML) , cluster-based Blockchain method,
Internet of Things (IoT), stochastic block model, Multi-Access Edge
Computing (MEC)

1 Introduction

Cluster-based blockchain edge computing is a cutting-edge technology that merges
three developing fields: blockchain, edge computing, and cluster computing.Blockchain
is a distributed ledger system that enables numerous parties to share a single
source of truth without the need for a central authority. Edge computing is a
computing paradigm that brings computation and data storage closer to the
devices that generate and consume data in order to reduce latency, bandwidth
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utilization, and reliance on cloud computing. Cluster computing is a technique
that allows multiple computers to work together as a cluster to achieve higher
performance, availability, and scalability[15]. Cluster-based blockchain edge com-
puting aims to combine the benefits of these three technologies to create a de-
centralized and efficient computing infrastructure that can support a wide range
of applications, from IoT devices to artificial intelligence (AI) algorithms. One
potential application of cluster-based blockchain edge computing is in the field of
smart cities, where a large number of IoT devices generate data that needs to be
processed in real-time. By using a cluster-based blockchain edge computing ar-
chitecture, smart cities can create a decentralized and secure infrastructure that
allows devices to exchange data and compute tasks without relying on a central
authority. Another potential application is in the field of AI, where large-scale
machine learning models require massive amounts of data and computation. By
using a cluster-based blockchain edge computing architecture, AI algorithms can
distribute the computation and storage across multiple nodes in a decentralized
and fault-tolerant manner, while preserving data privacy and security. This study
adopts cluster-based blockchain edge computing, which has the potential to alter
the way we build and implement distributed computing systems by providing
a flexible, scalable, and secure architecture that can support a wide range of
applications and use cases.

Optimally allocating resources in mobile networks is a complex problem that
requires balancing the competing demands of various stakeholders, such as users,
operators, and service providers. Traditional approaches to resource allocation
have relied on centralized control and decision-making, which can be slow, inef-
ficient, and vulnerable to single points of failure. Cluster-based blockchain tech-
nology provides a decentralized and secure architecture for managing mobile
network resources, making it a possible alternative to traditional resource alloca-
tion methodologies. Cluster-based blockchain networks can ensure that resource
allocation decisions are made in a distributed and transparent manner without
relying on a central authority by employing a blockchain-based consensus process
(build an SBM). Mobile network resources can be allocated in a cluster-based
blockchain network utilizing smart contracts, which are self-executing computer
programs that can autonomously enforce the rules and norms controlling re-
source allocation. For example, a smart contract could specify the terms of a
mobile data plan, such as the amount of data allocated per user, the price of
the plan, and the duration of the plan. Cluster-based blockchain networks can
also leverage edge computing resources to optimize resource allocation in mobile
networks. By using edge computing resources, such as computing power and stor-
age capacity at the network edge, mobile network operators can reduce latency,
improve network performance, and enhance the user experience. Overall, cluster-
based blockchain technology offers a promising approach to optimally allocating
resources in mobile networks. By providing a decentralized and secure infras-
tructure for managing network resources, cluster-based blockchain networks can
enhance network performance, improve user experience, and increase efficiency
and transparency in mobile network operations.
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Optimally allocating resources in current mobile networks offers three sig-
nificant issues. Developing strategies for optimal model-based heterogeneous in
a 5G and beyond environment based on limited game-based resource allocation
schemes.[1]-[3], as well as effective heuristics [6], Machine learning for wireless
communications has progressed rapidly since its introduction. In this article,
we’ll look at three approaches to tailoring deep learning for mobile network
applications: mobile data creation, end-to-end Cloud-Edge wireless communica-
tions, and network traffic control that can adapt to changing mobile network
environments. ,[4]-[5]. A primal-dual approach for learning resource allocations
in wireless networks via low-dimensional action utilizing a zeroth-order deter-
ministic two-point gradient approximation scheme;see,e. g.,[7]-[9] space explo-
ration. We analyze the key concerns, techniques, and various state-of-the-art
attempts connected to the offloading and task placement QoS Scheduling chal-
lenges from a survey-related study. We use a new characterizing network model
to investigate the entire job placement offloading policy from mobile devices
to the edge cloud.To meet the requirements of practical applications such as
robotics and autonomous vehicles, transportation management systems, health-
care, as well as telepresence, virtual reality (VR), augmented reality (AR), and
mixed reality (MR), 6G edge computing mobile networks will require massive
internet of things connectivity, ultra-reliability, low latency, and extreme high
bandwidth.This Fig. 1 edge cloud or edge computing, on the other hand, is a
novel concept and technology that can address current cloud computing prob-
lems, such as the time it takes to relay information to a centralized data center,
which delays decision making. An edge computing solution involves physically
relocating computational resources closer to the source of the data, which is typ-
ically an IoT device or sensor application.Edge computing removes the need for
large amounts of data to be transmitted between servers, clouds, and devices or
edge locations to be processed by processing data at the network’s edge. Four
types of services are deployed from various state-of-the-art MEC, as follows[2]:

– Infrastructure as a service (IaaS) is a type of cloud computing service that
offers pay-as-you-go compute, storage, and networking resources on demand.
IaaS is one of four types of cloud services, along with software as a service
(SaaS), platform as a service (PaaS), and function-as-a-service (serverless).

– Cloud computing services that provide an on-demand environment for de-
signing, testing, delivering, and maintaining software applications are known
as platform as a service. PaaS is designed to help developers build web or
mobile apps rapidly without having to worry about setting up or managing
the underlying infrastructure of servers, storage, networks, and databases.

– Software as a service (SaaS) is a method of delivering software applications
internet on demand, typically by subscription. In the case of SaaS, the cloud
server and administration of the software application and supporting infras-
tructure. These servers are also in charge of maintenance tasks including
software upgrades and security fixes. Clients gain access to the program over
the internet, generally using a web browser on their phone, tablet, or PC.
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– FaaS, or Function-as-a-Service, is a cloud computing service that enables
clients to execute code in response to events without having to manage the
extensive infrastructure that is generally associated with developing and de-
ploying micro-services applications[3].

Fig. 1. MEC Infrastructure diagram in 6G network.

The manuscript is organized as follows. Section 2 provides background on MEC
optimum resource allocation and the Spectral Graph Theory Concept for Cluster-
Based Blockchain Infrastructure. Section 3 presents the design details of Stochas-
tic block model (SBM) for MEC. The prototype implementation and the exper-
imental processing are presented in Section 4, as well as the results and data
analysis. Our considerations and future works are listed on Section 5.

2 Spectral Graph Theory Concept for Cluster-Based
Blockchain

In this section, we will show how Cluster-Based Blockchain works with associated
matrices such as the adjacency matrix and graph Laplacian. Let G(V, |E|) be
a graph. We’ll let n = |V | denote the number of vertices/mobile nodes, and
m = |E| denote the number of edges. We’ll assume that vertices are indexed by
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0, . . . , n − 1, and edges are indexed by 0, . . . ,m − 1. The adjacency matrix**A
is a n × n matrix with Ai,j = 1 if (i, j) ∈ |E| is an edge node, and Ai,j = 0 if
(i, j) /∈ |E|. If G is an undirected graph, then A is symmetric. If G is directed,
then A need not be symmetric. The degree of a node i, deg(i) is the number of
neighbors of i, meaning the number of edges which i participates in. You can
calculate the vector of degrees (a vector d of length n, where di = deg(i)), using
matrix-vector mulpilication:

Lemma 1. (Matrix-vector multiplication):
Given a matrix A ∈ di×j

vector of degrees: A ∈ di
A and x matrix-vector multiplication is defined as
d = A x

where x is the vector containing all 1s of length n. You might alternatively simply
add the row entries of all matrix A. We will also use D = diag(d) - a diagonal
matrix with Di,i = di. The incidence matrix B is a n×m matrix which encodes
the relationship between edges and vertices. Let |E|k = (i, j) be an edge. Then
the k-th column of B is all zeros except Bi,k = −1, and Bj,k = +1 (for undirected
graphs, it doesn’t matter which of Bi,k and Bj,k is +1 and which is −1 as long
as they have opposite signs). Note that BT acts as a sort of difference operator
on functions of vertices, meaning BT f is a vector of length m which encodes the
difference in function value across all edge nodes. You can check that BTxC = 0,
where xC is a connected component indicator (xC [i] = 1 if i ∈ C, and xC [i] = 0
otherwise). C ⊆ V is a connected component of the graph if all vertices in C
have a path between them, and there are no vertices in V that are connected
to C which are not in C. This implies BT 1 = 0. The **graph Laplacian** L is
an n × n matrix L = D − A = BBT . If the graph lies on a regular grid, then
L = −∆ up to scaling by a finite difference width h2, but the graph Laplacian is
defined for all graphs. Note that the null-space of L is the same as the null-space
of BT (the span of indicators on connected components). In Fig. 2, it makes
sense to store all these matrices in sparse format. Spectral embeddings are one

Fig. 2. The graph laplacian of 100 mobile nodes when cluster converge method.

way of obtaining locations of vertices of a graph for visualization. One way is
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to pretend that all edges are Hooke’s law springs, and to minimize the potential
energy of a configuration of vertex locations subject to the constraint that we
can’t have all points in the same location. In one dimension:

minimize
x

∑
(i,j)∈|E|

(xi − xj)
2

subject to

xT 1 = 0, ∥x∥2 = 1

Note that the objective function is a quadratic form on the embedding vector x:∑
(i,j)∈|E|

(xi − xj)
2 = xTBBTx = xTLx (1)

Because the vector 1 is in the nullspace of L, this is similar to locating the
eigenvector with the second-smallest eigenvalue. We can use the eigenvectors
for the next-largest eigenvalues for a higher-dimensional embedding. Spectral
Graph Theory is the study of graphs, which are mathematical structures used
to model relationships between objects. Spectral Graph Theory focuses on the
eigenvalues and eigenvectors of the graph’s adjacency matrix, which can provide
insight into the graph’s properties. For example, spectral graph theory can be
used to analyze the connectivity and clustering of a graph.Spectral clustering
refers to using a spectral embedding to cluster nodes in a graph. Let A,B⊂V
with A ∩B = ϕ We will denote

E(A,B) = {(i, j) ∈ |E| | i ∈ A, j ∈ B} (2)

One way to try to find clusters is to attempt to find a set of nodes S ⊂ V with
S̄ = V \ S, so that we minimize the cut objective

C(S) =
|E(S, S̄)|

min{|S|, |S̄|}
(3)

The inequality bounds the second-smallest eigenvalue of L in terms of the optimal
value of C(S). In fact, the way to construct a partition of the graph which is
close to the optimal clustering minimizing C(S) is to look at the eigenvector x
associated with the second smallest eigenvalue, and let S = {i ∈ V | xi < 0}.
As Fig. 3, let’s look at a graph generated by a stochastic block model with two
clusters. The ”ground-truth” clusters are the ground-truth communities in the
model. As Fig. 4,we obtained. A value of 1 means that we found the true clusters.

3 Stochastic block model (SBM) and Cluster-Based
Blockchain

This study’s SBM structure is a mathematical model used for assessing network
structure and community detection, whereas a cluster-based blockchain is a con-
cept that combines clustering with blockchain technology to improve scalability
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Fig. 3. The graph Laplacian of 100 mo-
bile nodes when spectral clustering to par-
tition into two clusters converge method.

Fig. 4. The graph Laplacian of 100 mo-
bile nodes when the adjusted rand index
to measure the quality of the clustering.

and efficiency. It is assumed that nodes in a mobile network are organized into
groups or communities, and that edges between nodes are formed based on prob-
abilities that rely on the nodes’ community assignments. Assume the following
assumptions here: n - the number of mobile nodes in the graph N - n× n adja-
cency matrix A - n× n matrix of probabilities Many statistical network models
lie under the umbrella of independent edge random networks, also referred to
as the Inhomogeneous Erdos-Renyi (IER) model. The elements of the network’s
adjacency matrix A are sampled individually from a Bernoulli distribution in
this model:

A(i, j) ≈ Bernoulli(Pi,j) (4)

If n is the number of mobile nodes, the matrix P is a n*n matrix of probabilities
with elements in [0.1] . We can design a variety of specialized models depending
on how the matrix P is created. We will now go over a few of these options. It is
worth noting that for each model, we assume that there are no loops, or that the
diagonal of the matrix P is always set to zero. Each node in the stochastic block
model (SBM) is modeled as belonging to a block(sometimes called a community
or group). The probability of node i connecting to node j is just a function of
the two mobile nodes’ block membership. Let n be the number of nodes in the
graph, then τ is a length n vector which indicates the block membership of each
node in the graph. Let K be the number of blocks, then B is a K ×K matrix of
block-block connection probabilities.

P(i, j) = Bτiτj (5)

In the stochastic block model (abbreviated SBM), we have graphs of the form
G(n, p, q). For clarity, consider the following:

Assumption 1 The class C is not empty.
let’s assume that n is even and p > q



8 Chih Peng Lin et al.

In this paradigm, there are two ”communities” of varying sizes n/2
so that the probability of an edge existing between any two nodes within a com-
munity is p and the probability of an edge between the two communities is q
This recovers the communities from a random graph realization G(V, |E|).

The Inhomogeneous Erdos-Renyi model is very simple and lacks many of the
properties of networks in real scenarios. It is only a mathematical object with
similar phase transition effects. In this study, no communities establish between
nodes. An SBM computing for cluster-based blockchain was developed in this
study; the majority of these scenarios’ MEC models use its variants. Each node
in its most mobile nodes belongs to one of C communities, and the occurrence
of an edge between two nodes is an event that is independent of the other edges
and the probability Qci,cj (withQ ∈ RC×C definite probability matrix and ci,cj
node communities i,j respectively).

A graph containing two communities is created by the following cell. Al-
though nodes within the same community have strong connections, nodes within
different communities have less connections. Experiment with the two accessible
parameters here: ’n’ and ’Q’.

This research analyses the qualitative difference between Q with all posi-
tive eigenvalues with Q with some negative eigenvalues using two communities
to simplify the visualisation. For example, consider the following parameters:

‘n=[45, 5, 45, 5]‘ and Q =

(
0.05 0.9 0 0
0.9 0.8 0 0.5
0 0 0.05 0.9
0 0.5 0.9 0.9

)
. How many communities are there

about SBMn(z,B). We know from the graphs that nodes (0, n
2 − 1) belong to

community A, whereas nodes (n2 − 1, n) belong to community B.

Corollary 1. Let p = α log(n)/n
and q = β log(n)/n
If:
simulate the probability of exact recovery when

α+ β

2
−

√
αβ > 1

then do the same for
α+ β

2
−
√
αβ < 1 (6)

4 RESULTS AND DISCUSSION

Fig.5 depicts the adjacency matrix for the example, where black and white in-
dicate 1 and 0, respectively. Graphs with binary adjacency matrices are referred
to as binary graphs from now on. In the SBM, Fig.7,n=1000 and each node
belongs to one of the K(< n) groups, where K = 2 in the example. Because the
groups are unknown before to modelling, a K-vector Zp is also defined for node
p = 1, 2, . . . , n, with all elements 0 except one that takes the value 1 and reflects
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the group node p belongs to in SBM(z, B). In Fig.7 network with ‘n=[60,60]
nodes and block matrix use the following parameters‘ Q = ( 0.5 0.2

0.2 0.5 ). In order
to describe the generation of the edges of G according to the groups the nodes
belong to, a 2× 2 cluster block matrix, denoted by C, is introduced. If Fig.6 G
is k-means clustering-based blockchain , for 1 ≤ i ≤ j ≪ K,Cijϵ[0, 1] and repre-
sents the probability of occurrence of an edge between a node in group i and a
node in group j. Spectral Graph Theory can be used to analyze the structure of
blockchain networks, and to identify nodes that are particularly important for
maintaining the network’s integrity. Edge computing can be used to improve the
performance of blockchain networks by reducing the amount of data that needs
to be transmitted over the network. Additionally, edge computing can be used
to perform computations related to Spectral Graph Theory, such as the calcu-
lation of graph Laplacians, which can be useful for machine learning and other
applications.Let p be denote the probability of an edge between nodes in the
same cluster, and q denote the probability of an edge between nodes in different
clusters. This Study consider Spectral Graph Theory for stochastic block model
with k = 2 clusters and n = [60, 60] nodes per cluster.Fig.8 Analysis Adjacency
spectral embedding when mobile nodes Histogram and Fig.9 scatter diagram
for 2 communities distribution state. Plot a phase diagram of the adjusted rand
index (ARI) score as p and q both vary in the range [0, 1] The Random Dot
Product Graph (RDPG) can also be applied in the context of blockchain analy-
sis or modeling. In this study, the RDPG can be used to represent relationships
or interactions between different entities in a blockchain network. A blockchain
is a distributed ledger that records transactions across multiple nodes or partici-
pants. Each transaction can involve different entities such as users, addresses, or
smart contracts. By representing these entities as nodes and their interactions
as edges in a graph, the RDPG can help capture and predict analyze the under-
lying structure and dynamics of the blockchain network. To construct an RDPG
for blockchain analysis, one can associate latent vectors or features with each
entity in the blockchain. These latent vectors can represent various characteris-
tics or attributes of the entities, such as transaction history, account balances,
or network behaviors. In Fig.10, the dot product of the latent vectors of k = 5
clusters under pairwise distance entities can then be utilized to determine the
likelihood of an interaction or connection between them.If the dot product, for
example, exceeds a specific threshold, an edge can be constructed between the
respective nodes in the RDPG. After constructing the RDPG, several graph
analysis techniques can be used to acquire insights into the blockchain network.
In Fig.11 k = 6 clusters, RDPG can incorporate community discovery, cen-
trality metrics, clustering, and anomaly detection, among other things. Using
the RDPG framework, researchers and predictive analysts can investigate the
structural characteristics and behaviors of the blockchain network and perhaps
find patterns or anomalies that may be useful for understanding its dynamics
or detecting fraudulent activity. It is crucial to note that the application of the
RDPG to blockchain analysis is still an evolving MEC scenario, and there are
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numerous computers and methodologies that can be applied depending on the
specific cloud edge computing for vehicle and transport.

Fig. 5. The graph execution time and en-
ergy consumption of each mobile nodes
when cluster converge method..

Fig. 6. The graph execution time and en-
ergy consumption of each mobile nodes
when kmean cluster method..

Fig. 7. The graph execution time and energy consumption of each mobile nodes when
stochastic Block Model method.

5 Conclusion and future work

This investigation Multi-Access edge computing assisted wireless device (IoT)
offloading scheme communications is a key component of the future 6G scenario.
In this paper, we offer a new SBM-based method for cluster-based Blockchain
optimization of transmit reinforcement and resource estimation in a 6G com-
munication system. The technique used by the MEC system while also meeting
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Fig. 8. Analysis Adjacency spectral em-
bedding when mobile nodes Histogram for
2 communities.

Fig. 9. Analysis Adjacency spectral em-
bedding when mobile nodes scatter dia-
gram for 2 communities.

Fig. 10. The graph execution time and
energy consumption of each mobile nodes
when pairwise distance mode.

Fig. 11. The graph execution time and
energy consumption of each mobile nodes
when predict method.
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the greatest transmit power restriction. The simulation results suggest that the
proposed offloading technique can reduce the cumulative rate of MEC com-
munication in a short period of task time (CPU time) when compared to the
real-world scheme with fixed transmit mobile cloud computing. In the future,
we will examine optimal allocation of MEC to IOT using a matching algorithm,
as well as deep learning-based design of a 6G cloud integration environment.
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