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Abstract. The COVID-19 pandemic has revitalized focus on predictive
models, but scant research has been devoted to modeling game trans-
mission, and current models are inadequate in this regard. To predict
the spread of games within the population, this paper proposes the ”ad-
diction individuals”, a new group based on the three groups of the SIR
model. We applied the SIAR model, designed based on differential equa-
tions, to predict game transmission within this population. The SIAR
model was validated on an existing dataset and compared with the tra-
ditional SIR model, demonstrating its greater accuracy.
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1 Introduction
Recently, there have been significant improvements in the quality of life of in-
dividuals through the use of predictive models[7][2]. Notably, models developed
using machine learning and artificial intelligence techniques have become in-
creasingly popular. Such models can learn and reveal patterns hidden in large
datasets to anticipate future trends and behaviors. These include intelligent voice
assistants, smart home controls, and personalized recommendation systems, all
of which are built on predictive modeling technology. They aim to enhance
people’s lives by making them more convenient, efficient, and comfortable. Pre-
dictive models are increasingly expanding into diverse fields, such as healthcare,
finance, and education, enhancing people’s services and providing more accu-
rate decision support. Therefore, predictive models are playing an increasingly
important role in enhancing the quality of life for individuals. In particular, the
application of predictive models in controlling infectious diseases has been under
the spotlight during the COVID-19 pandemic. For instance, Cooper et al. made
significant contributions to the COVID-19 management using their predictive
models for control and prevention[6].

Although some models may perform well under specific circumstances, they
tend to be ineffective in predicting the spread of games due to the characteris-
tics of game propagation they overlook. Avid gamers commonly experience game
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addiction, leading to their affinity towards specific games even after prolonged
periods. As a result, the number of players likely remains stable once the game
has been in the market for a while, contrasting the spread of infectious diseases.
Game development is resource-intensive; both human and material resources are
required to create successful games. Additionally, the number of active players
is the key revenue driver for game companies. Thus, it is vital for game com-
panies to predict the spread of games among the population. Regrettably, most
existing models do not account for or clarify the game addiction phenomenon.
The current challenge is to design models that incorporate this phenomenon of
game addiction.

The problem solved by predictive models actually involves time series [1].
Various techniques have been proposed, one of which is based on deep learning
techniques such as LSTM (Long Short Time Memory)[3] and RNN (Recurrent
Neural Network)[20], which has shown good promise in fitting time series data.
However, for smaller datasets (only a few hundred points), performance may
degrade significantly due to over-fitting[21]. In addition, these models have poor
explanatory power, especially for fluctuations in predicted outcomes. Another
technique is based on mathematical models, such as the SIR (Susceptible, Infec-
tious, or Recovered) model, which is considered a superior method for predicting
the propagation of contagious phenomena like COVID-19[6] and games. In real
game scenarios, there are usually players who are very enthusiastic with a par-
ticular game and keen to promote their favourite game to those around them.
However, these specific features are usually not captured by SIR models, which
are often crucial when predicting the spread of games.

To tackle these challenges mentioned above, this paper proposes a new pop-
ulation classification based on the SIR model to elucidate the addiction phe-
nomenon and introduces its own SIAR model, a prediction system that employs
a system of differential equations. This model has demonstrated high accuracy
in forecasting game spread among the population. Briefly, the contributions of
this paper can be summarised as follows:

1. Through an analysis of the communication characteristics of games, we have
identified a new group of individuals, referred to as the ”addicted ones.” This
group is essential in explaining the observed phenomenon of a game’s player
count stabilizing after the fervor for the game has subsided.

2. We propose a novel extension of the SIR model that incorporates a new group
of ’Addicted individuals’ into our system of differential equations, leading to
an improved model’s ability to predict the spread of games in the population
and provide additional explanatory power. The proposed model has coined
the SIAR model.

3. Our proposed SIAR model has been tested on existing datasets and com-
pared against current models, which has demonstrated its superior perfor-
mance in predicting the spread of games among the population.
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2 Related Works
Kermack and McKendrick were the first to propose a mathematical model for
describing the spread and control of infectious diseases in a population[9][10][11].
The model categorizes the population into three groups: susceptible, infected,
and recovered, and describes the transmission of infectious diseases in the pop-
ulation. Mathematical tools like calculus and difference equations[8] are used to
derive the fundamental equations and basic laws of infectious disease spread in
the population.

The COVID-19 pandemic prompted the widespread use of disease transmis-
sion models, including SIR models, to predict the spread and control of the
virus.Cooper et al. applied SIR models to predict the spread of COVID-19[6],
while Mwalili et al. used SEIR models to predict the spread of COVID-19 prop-
agation[14]. B Shayak et al. considered the lag between asymptomatic infected
individuals and COVID-19 symptoms, added them to the SIR model, and de-
rived predictions and analytical results for the spread and prevalence of the
virus by numerical simulation and fitting to actual data. The results highlight
the importance of planning and allocating resources for epidemic management
[17]. Benjamin F. Maier et al. used the SIR-X model based on SIR models to
explain the phenomenon of sub-exponential growth in mainland China during
the early stages of the COVID-19 epidemic and to show that this growth was
a direct consequence of epidemic control policies[13]. AK Singh et al. intro-
duce a algorithm that uses the differential evolution algorithm in combination
with Adam–Bashforth–Moulton method to learn the parameters in a system of
variable-order fractional SIR model, which can predict the confirm COVID-19
cases in India considering the effects of nationwide lockdown and the possible
estimate of the number of infliction inactive cases after the removal of lockdown
on June 1, 2020[18]. And Chen et al. utilized the α-path-based approach to de-
termine the uncertainty distributions and expected values of the solutions. They
also applied the method of moments to estimate the parameters and developed
a numerical algorithm to solve the model. The proposed model was then used to
describe the development trend of COVID-19 in Hubei province by analyzing in-
fected and recovered data[4]. Ram et al. developed a customized age-structured
SIR model by considering the social contact and distancing measures in Wash-
ington, USA[15].

Previous studies indicate that a variety of SIR-based models have signifi-
cantly aided in forecasting the transmission of communicable illnesses. Nonethe-
less, there has been little research done so far on anticipating the propagation of
games in societies, and current models are inadequate in projecting the spread
of games.

3 The SIR Model
The SIR model is frequently utilized to forecast the spread of infectious diseases
in epidemics and has shown success in modeling the spread of COVID-19 [6].
The model categorizes individuals into three groups:
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a) Susceptible individuals (S): Defined as individuals lacking immunity who
do not currently have the disease but are at risk of contracting it when exposed
to infected individuals.

b) Infected individuals (I): Individuals who have contracted the disease and
can pass it on to susceptible individuals.

c) Removed individuals (R): Individuals who have recovered from the disease
and, consequently, have developed immunity.

Then SIR model is controlled by the following ODE systems:

dS(t)
dt = −βIS

N
,

dI(t)
dt =

βIS

N
− γI,

dR(t)

dt = γI,


SIR Model’s ODE System (1)

where S(t), I(t), and R(t) represent the number of susceptible, infected, and
removed individuals at time t, respectively. Here, β represents the rate of in-
fection of susceptible persons by infected individuals per unit of time, while γ
represents the rate of recovery of each infected individual per unit of time.

What’s more, Fig. 1 provides a graph depicting the conversion of the three
populations in the SIR model.

Fig. 1. Conversion of the Three groups in SIR model

By utilizing the SIR model for game prediction, we will redefine the meanings
of the three populations:

a) Susceptible individuals (S): People who have yet to be introduced to the
game and who are likely to be recommended and subsequently become players.

b) Infected individuals (I): Current players of the game who have a chance
of losing interest, in addition to recommending the game to non-players.

c) Removed individuals (R): Past players of the game who have lost interest
and will no longer play.
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4 Methods

4.1 SIAR Model

Although the SIR model is effective in modeling the spread of infectious diseases,
it does not perform well when predicting the diffusion of non-medical phenomena,
such as the popularization of a new game.

Therefore, in our modified model, we introduce a new category of individuals:

– Addicted individuals (A): People excessively hooked on the game. They have
a low probability of losing interest in the game and a high probability of
recommending it to others.

The modified model is called the SIAR model, and its differential equations
are as follows:

dS(t)
dt = −βIS + ϵAS

N
,

dI(t)
dt =

βIS + ϵAS

N
− γI − αI,

dR(t)

dt = γI + θA,

dA(t)

dt = αI − θA


SIAR Model’s ODE System (2)

Here, β and γ have the same meanings as in the previous SIR model. The
parameter ϵ represents the probability that each addicted individual will pro-
mote the game to others. The parameter α represents the probability of a regular
player becoming addicted, while θ represents the probability of an addicted per-
son losing interest in the game.

In order for the model to be better understood, the relationship between the
four groups in the model is shown in Fig. 2.

Fig. 2. Conversion of the four groups in SIAR model
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4.2 The Solution of SIAR Model

To achieve our aim of predicting the spread of the game across the population,
we first defined a loss function to quantify the accuracy of our predictions:

Loss(Xpred, Xreal) =

n∑
i=1

(xpred,i − xreal,i)
2 (3)

where xpred is a vector indicating the predicted number of individuals who
will play the game per day, and xreal is a vector indicating the real number of
individuals who will play the game per day.

To determine the optimal parameters of our model, we utilize the BFGS al-
gorithm[12], a numerical method to minimize multivariate functions. The BFGS
algorithm is a Newton-like method that estimates the Hessian matrix of the ob-
jective function so that the search direction of the method can be progressively
updated. This method has higher accuracy and a faster convergence rate when
compared to the gradient descent algorithm[16].

The central concept of the BFGS algorithm involves an iterative method that
approximates the Hessian matrix in the following algorithmic form:

Bk+1 = Bk +∆Bk, k = 0, 1, 2, ... (4)
To initiate the iterative process, we choose B0 to be the identity matrix, I.

The rate of BFGS convergence can be increased by appropriately selecting ∆Bk

as:

∆Bk = αuuT + βvvT (5)
Incorporating Newton’s condition results in the following expression:

yk = Bksk +
(
αuT sk

)
u+

(
βvT sk

)
v (6)

Setting αuT sk = 1, βvT sk = −1,u = yk,v = Bksk, yields:

α =
1

yT
k sk

, β = − 1

sTkBksk
(7)

Incorporating all the above-step results in the computation formula for ∆Bk:

∆Bk =
yky

T
k

yT
k sk

− Bksks
T
kBk

sTkBksk
(8)

After obtaining ∆Bk, as an additional step, we can obtain Bk+1 by applying
the recursive formula:

Bk+1 = Bk +
yky

T
k

yT
k sk

− Bksks
T
kBk

sTkBksk
(9)

Here, yk = B−1
k ∆xk is the change in gradient, sk represents the change in

the optimization variables and Bk is the approximation of the Hessian of the
gradient.
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5 Experiment Results

To further evaluate the validity of the model, we performed a series of tests using
the dataset to assess its accuracy and reliability. We compared the model’s per-
formance to other established models, as well as analyzed its ability to generalize
to new data and make accurate predictions. Our testing methodology involved
a rigorous and comprehensive approach, to ensure the model’s soundness was
thoroughly assessed. The results of these tests confirmed the robustness of the
model, indicating its suitability for use in real-world applications.

5.1 Dataset

The dataset we used is provided by MCM[5], which contains the number of
people playing the game ”Woddle” from Jan 07 2022 to Dec 31, 2022, which is
shown in Fig. 3.
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Fig. 3. The preview of dataset

In order to uphold the scientific validity of the experiment, two partitioning
methods were implemented on the dataset.

– The first method involved dividing the 359-day dataset into two parts: the
initial 299 days were assigned for training the model’s parameters, while the
last 60 days were reserved for testing the model’s effectiveness. This method
was utilized to assess the model’s predictive performance.

– The second method employed all 359 days of the dataset for both training
and testing purposes. This segmentation approach evaluated the model’s
ability to accurately fit the dataset.
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5.2 Experiment Implementation

For the implementation of the model, we use the optimize.minimize function
and integrate.odeint function of the scipy library[19]. The optimize.minimize
function is used to optimize the parameters of the model and integrate.odeint
is used to solve the differential equations.

Upon completion of the model training phase, the following formula was
utilized to determine the model’s level of error:

Error(Ypred, Yreal) = 2

n∑
i=1

|ypred,i − yreal,i|
ypred,i + yreal,i

(10)

5.3 Analysis

Results in the case of spliting dataset After analyzing the outcomes of the
SIR and SIAR models with the split dataset, as illustrated in Fig. 5 and 4 and
Table 1, it is evident that the SIAR model offers significantly better predictions
of the game’s transmission phenomenon compared to the SIR model. Through
the examination of both SIR and SIAR models, as depicted in Fig. 5 and 4 and
Table 1, it is evident that the SIAR model provides a better representation and
prediction of the game’s transmission patterns compared to the SIR model.
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Fig. 4. Results of the SIAR model after
splitting the training and test sets
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Fig. 5. Results of the SIR model after
splitting the training and test sets

Table 1. Error table for SIR and SIAR model

SIR SIAR
Train Set Error 0.045 0.004
Test Set Error 0.48 0.099



SIAR: An Effective Model for Predicting Game Propagation 9

Results in the case of all dataset When we trained and tested the perfor-
mance using the full dataset, the results are shown in Fig. 7 and 6 and Table 2.
Analysis of the results shows that our SIAR model has a better ability to fit the
propagation data of the game compared to the SIR model.
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Fig. 6. Results of the SIAR model using
all the dataset
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Fig. 7. Results of the SIR model using all
the dataset

Table 2. Error table for SIR and SIAR model

SIR SIAR
All dataset Error 0.214 0.004

Under both scenarios, it became apparent that the SIR model exhibits a poor
fit with the data during the latter half of the time period. We attribute this result
to the fact that during this time frame, the majority of players demonstrated
strong loyalty towards the game, making the likelihood of becoming disenchanted
with the game extremely low. The SIR model is unable to accommodate this
framework, as it does not account for loyal players, thereby impeding its ability
to predict and fit the game’s transmission in this condition. On the other hand,
our SIAR model demonstrated outstanding success in accommodating prevalent
loyal players, fitting the dataset consistently well.

6 Conclusion

This paper introduces a SIAR model that predicts the propagation of games
among the population. Our model is constructed based on the SIR model while
devoted to the gaming-specific attributes in the population. The implementation
of our model can lead to more accurate and comprehendible predictions of gam-
ing patterns among crowds. Additionally, we conducted multiple comprehensive
tests to establish the dependability and validity of our model.
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