Ensemble Deep Learning Techniques for Advancing
Breast Cancer Detection and Diagnosis

Adam M.Ibrahim', Jiangiang Li', and Yan Pei?

! Faculty of Information Technology, Beijing University of Technology, Beijing 100124,
China.
adam2222mohmd@gmail.com, lijianqiang@bjut.edu.cn
2 Computer Science Division, University of Aizu, Aizuwakamatsu, Fukushima, 965-8580,
Japan.
Email: peiyanQu-aizu.ac.jp

Abstract. The integration of deep learning (DL) and digital breast tomosyn-
thesis (DBT) presents a unique opportunity to improve the reliability of breast
cancer (BC) detection and diagnosis while accommodating novel imaging tech-
niques. This study utilizes the publicly available Mammographic Image Anal-
ysis Society (MIAS) database v1.21 to evaluate DL algorithms in identifying
and categorizing cancerous tissue. The dataset has undergone preprocessing
and has been confirmed to be of exceptional quality. Transfer learning tech-
niques are employed with three pre-trained models - Mobilenet, Xception,
Densnet, mobilenet Istm - to improve performance on the target task. Stack-
ing Ensemble learning techniques will be utilized to combine the predictions
of the best-performing models to make the final prediction for the presence of
BC. The evaluation will measure the performance of each model using stan-
dard evaluation metrics, including accuracy (ACC), precision (PREC), recall
(REC), and Fl-score (F1-S). This study highlights the potential of DL in
enhancing diagnostic imaging and advancing healthcare.
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1 Introduction

BC is a frequent and lethal illness, making risk prediction difficult. Mammography
is the most expensive early detection technology, and a standardized and communi-
ty-based screening approach has been proposed to address this [1,2]. Cancer risk
prediction methods use multiple risk factors, such as molecular genetics, imaging,
and public health data, to accurately predict the likelihood of BC based on individual
diagnostic imaging screenings [3]. Breast density is not a reliable predictor of BC risk,
as it is used to determine the frequency of screening [4]. Mammography screening is
essential to reduce death rates from breast cancer, but age is the main factor used
to select people for screening. Interest is growing in customized screening methods
[5]. Risk stratification using disease prediction models can identify women at risk of
developing BC, allowing tailored surveillance to maximize benefit [6]. A technique
used in histopathology photos to find cancer is the BC detection factor [7]. Cancer
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risk models are used to assess cancer risk and project outcomes, based on the elevated
risk of BC linked to various characteristics, without any connection to the type of
mammography used [8].

Cancer is a major global public health issue, increasing prevalence in industrialized
and developing countries [9]. Breast disease is the unchecked, potentially cancerous
proliferation of breast cells, and microscopic histopathological examinations depend
on expert visual interpretation, which is subjective and dependent on the observer’s
knowledge [10]. The process of multi-classification cancer diagnosis utilizing histol-
ogy images is difficult and time-consuming due to the lack of qualified pathologists
in many low-income nations. This can lead to incorrect findings due to the intricacy
of the pictures and the pathologist’s limited ability to comprehend a large quantity
of data [11,12]. Misinterpretation of screening mammography can lead to overdiag-
nosis, costing people money. To increase the efficacy of screening mammography, a
new methodology was developed, combining picture characteristics and a forecast-
ing technique. Bidirectional screening mammography density imbalance was used as
a signal to assess the likelihood of BC in computed tomography images [13]. The
experiment tested whether a DL-based method could outperform established frame-
works for identifying cancer risk, as patients often have repeated mammography ex-
aminations during BC monitoring [14]. Predicting the results of a single abnormal
mammogram is the screening task, but we did not use many priors as inputs to
the models. [15]. Research opportunities for biological-subtype intelligent forecasting
have become available due to the rapid development of BC detection technologies,
but forecasting for biological subgroups is still a difficult problem.

1.1 Related Work

According to the ratings of the remaining data, writers in [16] The authors used
a deep feed-forward network to train a RankDeepSurv model to predict relapse in
patients with nasopharyngeal cancer. The C-index of the RankDeepSurv model was
higher than more conventional survival analysis techniques, with a C-index of 0.681.
Using images of tumor cell extracts, the authors of [17] The scientists present a DL
network that blends convolutional neural networks (CNNs) with recurrent models
to predict the prognosis of colorectal cancer. They examined 420 colorectal cancer
patient tumor samples and found that DL algorithms can derive more predictive
information from tissue shape than conventional human observation techniques. In
[18], DeepSurv is a deep neural network (DNN) for survival analysis based on Cox
regression hazard models. It predicts the correlation between a person’s variables and
clinical result, using link weights to determine how a patient’s variables impact their
level of risk. It outperforms existing advanced survival models and predicts more
intricate relationships between a participant’s characteristics and failure risk.
Without the help of a toxicologist to pinpoint specific areas, MesoNet is a deep
convolutional neural network method that estimates the likelihood that mesothelioma
patients will survive, according to research published in [19]. MesoNet can identify
regions linked to patient outcomes, and researchers found that these regions are usu-
ally found in the stroma and histologically. The study’s findings suggest that DL
algorithms may be able to identify previously unknown features that are predictive
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of clinical results, resulting in the discovery of novel biomarkers. Researchers outline
three techniques in [20]. A solitary training batch is used to assess the effectiveness of
training CNNs. Deep layer activations are subjected to a dispersed stochastic neigh-
bor modeling approach to show how the classes are separated. Finally, DeepDream
with special settings such as pyramid level 12, 75 iterations, a scale of 1.1, and his-
togram stretching is used to show the activation of deep neurons in the 46 layers of the
VGG19 DL model. Without requiring a separate tumor segmentation step, scientists
in [21] have presented three residual DNN models as options to estimate methylation
conditions. According to the study, ResNet50 outperformed ResNet18 and ResNet34
with a statistically significant ACC of 94.90%.

2 Methodology

This section will outline our approach, broken down into steps illustrated in Figure.
1.
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Fig. 1. The proposed framework for breast cancer classification involves collecting mammog-
raphy images from the MIAS dataset, comparing the performance of each model, identifying
the best-performing models for feature extraction, and training multiple models using en-
semble learning. The predictions are then pooled to create a final forecast.

2.1 Dataset

The Mammographic Image Analysis Society (MIAS) database v1.21 has been used to
identify and diagnose breast cancer. It contains 322 digitized mammograms, of which
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208 have benign and 114 have malignant labels. The ground truth data includes the
size and shape of any masses or microcalcifications, the level of speculation, and the
existence of architectural distortions. These data are important for understanding the
normal structure of the breast tissue.

2.2 Preprocessing

Preprocessing steps are essential for medical image analysis tasks, as they significantly
impact the model’s performance. Inaccurate preprocessing can introduce image ar-
tifacts or anomalies, potentially compromising the model’s ACC. It is important to
ensure that the chosen preprocessing methods are appropriate for the specific task
and that the data is of exceptional quality. The dataset has already undergone pre-
processing and is available online. However, it is still important to confirm that the
applied preprocessing techniques are suitable for the task and that the preprocessing
process has not introduced any artifacts or errors.

2.3 Deep Learning

This section will elaborate on the DL techniques utilized in our approach.

MobileNet MobileNet architecture was implemented, consisting of convolutional
and pooling layers, followed by multiple fully connected layers. ReLU activation func-
tion was used, running 100 epochs and a batch size of 16, Adam optimizer, categorical
cross-entropy loss function and ACC metric for evaluation. To fine-tune the pretrained
model, the weights of the convolutional layers were frozen and only trained the fully
connected layers.

Xception The pre-trained Xception model was fed a predetermined input shape and
size, with the include top parameter set to False. Fresh layers were added, including
dropout layers to avoid overfitting and fully linked layers with ReLLU activation func-
tions. Two nodes in the output layer have a softmax activation function. The model
was trained for 100 iterations, with the training data being randomly mixed before
each iteration.

MobileNet-LSTM This approach utilized the MobileNet architecture as a feature
extractor and added an LSTM layer for sequence processing. The model was built
using the Adam optimizer with a batch size of 16, and trained for 100 iterations,
with the training data being randomly mixed before each iteration. To incorporate
sequence processing, the output of the fully connected layers was reshaped into a 3D
tensor with a shape of (batch size, time steps, input dim). The LSTM layer had 256
units and dropout of 0.3, and a softmax output layer with two nodes was added. The
model was trained for 100 iterations, with the training data being randomly mixed
before each iteration.



Title Suppressed Due to Excessive Length 5

DenseNet The DenseNet201 model is pre-trained on the ImageNet dataset, and the
last few layers are replaced with new layers for our specific classification task. The
first few lines of code load the pre-trained DenseNet201 model with the input shape
of the images, exclude the top layers and set the pooling method to average. Then,
we define the new layers on top of the pre-trained model, taking inputs from the
pre-trained model and outputs from the new layers. We compile the model using the
Adam optimizer, categorical cross-entropy loss, and ACC metric and fit the model
on the training data for 100 epochs with a batch size of 16 and shuffle the data after
each epoch.

2.4 Ensemble Learning

After comparing the performance of the DL, we will select the best three models
based on their evaluation metrics. We will then use an ensemble learning tech-nique,
such as voting or stacking, to combine the predictions of these three models to make
a final prediction for the presence of BC in mammography images. The ensemble
learning technique can help improve the model’s overall performance by combining
the strengths of each individual model and reducing their weaknesses.

2.5 Evaluation

During the assessment phase, common evaluation metrics such as ACC, PREC, REC,
and F1-S will be used to assess each model’s performance. These metrics are calcu-
lated using the confusion matrix, which lists a classification model’s performance
in four categories: true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). ACC measures the fraction of properly classified samples,
PREC measures the proportion of correctly classified positive samples over the total
number of positive predictions, REC measures the proportion of correctly classified
positive samples over the total number of positive samples in the dataset, and F1-S
is a harmonic mean of PREC and REC. These metrics are useful for datasets with
imbalanced classes and can be calculated using specific formulas, as depicted in Egs.
1-4.

ACC = TP+ZZC]1\.;1?}\;+FN M)
PREC = 55 PT+P 5 (2)
REC = TPT+PFN )
Fl—-S=2. M (4)

PREC + REC
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3 Results and Comparison

3.1 Results

The results show that MobileNet achieved the highest ACC of 93.34%, followed by
MobileNet-LSTM with an ACC of 92.64%. Xception achieved an ACC of 88.62%,
and Densnet achieved an ACC of 87.23%. Looking at the confusion matrix Figure
2 of each model, we can see that MobileNet had the fewest misclassifications, with
only 18 false negatives and 30 false positives. Xception had more false positives,
with 52 misclassifications, while Densnet had the same number of false positives but
more false negatives. It’s important to note that these results were obtained using
the same dataset and training procedure, so the differences in performance can be
attributed to the architecture of the models. MobileNet and MobileNet-LSTM both
use a lightweight architecture optimized for mobile devices, which may have con-
tributed to their superior performance. Xception, on the other hand, is a deeper and
more complex model, which may have made it more difficult to train effectively with
the limited dataset. Densnet has similar layers to Xception but a different architec-
ture, which may have contributed to its lower performance. Additionally, although
we used transfer learning to initialize the models’ weights with pre-trained weights
from ImageNet, the particular pre-trained model used may have affected the model’s
performance. The results suggest that the MobileNet architecture is well-suited for
this classification task and outperforms other architectures, such as Xception and
Densnet. However, further experimentation with different architectures and datasets
may yield different results. Multiple models are trained using the ensemble learning
approach, and then their predictions are pooled to get a final forecast. We have cho-
sen the three best-performing models, MobileNet, MobileNet-LSTM, and Xception,
to create an ensemble model. The ensemble model combines the predictions of three
models using a simple voting scheme. The class with the most votes is considered
the final prediction. The ensemble model has achieved an ACC of 94.45%, which is
a significant improvement over the individual models’ performances. Comparing the
confusion matrices of the individual models and the ensemble model, it can be seen
that the ensemble model has fewer misclassifications due to the fact that it has taken
into account the strengths and weaknesses of each model and made a final prediction
based on their combined expertise. In conclusion, the ensemble model has achieved
the highest ACC, and it can be seen that combining multiple models’ predictions
has led to a more accurate and robust model. The classification report shows that
all the models have achieved high ACC, PREC, REC, and F1-S in detecting ma-
lignant and benign tumors. The MobileNet and MobileNet-LSTM models achieved
the highest PREC scores of 0.93 and 0.91 for benign tumors, respectively, while the
ensemble model achieved the highest PREC score of 0.95 for malignant tumors. The
MobileNet-LSTM model achieved the highest REC score of 0.96 for benign tumors,
while the Xception model achieved the highest REC score of 0.91 for malignant tu-
mors. The Densenet model achieved the lowest ACC and F1-S among the individual
models. From Figure 3, The MobileNet-LSTM model was trained for 100 epochs,
with a batch size of unspecified size. The training ACC started at 60.12% in the
first epoch and steadily increased to 98.92% by the end of the training. The loss
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Fig. 2. MobileNet had the fewest misclassifications, with 18 false negatives and 30 false
positives. Xception had more false positives, Densnet had the same number of false positives
but more false negatives, and MobileNet-LSTM had 17 false negatives and 36 false positives.

function decreased from 0.7559 to 0.0270 over the course of the training. For Xcep-
tion, the ACC increased steadily from 55.81% to 81.50%, and then experienced more
fluctuations in ACC but continued to improve overall, reaching a maximum ACC
of 94.59% by the 30th epoch. After that, the model’s ACC seemed to plateau and
remain relatively stable, hovering around 93-94%. The training process seems to have
been successful in producing a well-performing model. The results represent the per-
formance of four different models Figure 4, namely MobileNet, Xception, DenseNet,
and MobileNet-LSTM, evaluated using the receiver operating characteristic (ROC)
curve analysis. The ROC curve is a graphical representation of the trade-off between
sensitivity (true positive rate) and specificity (true negative rate) of a binary classi-
fier as the decision threshold is varied. The ROC curve for MobileNet has an AUC
of 0.99, indicating excellent performance in distinguishing between positive and neg-
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Fig. 3. The proposed algorithms improved their training and testing accuracy with each
epoch, and after 100 epochs, the hybrid Model MobileNet-LStm achieved 0.99 accuracies.
The training cross-entropy loss function decreased with each epoch, with a minimum decrease
in the final epoch.

ative classes. Xception has an AUC of 0.96, DenseNet has an AUC of 0.93, and the
MobileNet-LSTM model has an AUC of 0.98, similar to Xception. The results suggest
that MobileNet and MobileNet-LSTM models outperform the other two models in
terms of AUC, while all models perform well in distinguishing between two classes,
with DenseNet having the worst performance with an AUC of 0.93. These results are
important when selecting a suitable model for a given task, as the trade-off between
performance and computational complexity needs to be carefully considered. In Table
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Fig. 4. The hybrid MobileNet-LSTM model achieves an AUC of 0.98, indicating excellent
classification performance and fewer false-negative results than standard CNN-based models.

1, this study evaluated five models with performance metrics such as ACC, PREC,
REC, F1-S, and ROC AUC. The ensemble model had the highest ACC score with
a score of 94.45%, followed by MobileNet with a score of 93.34%, MobileNet-LSTM
with a score of 92.64%, Xception with a score of 88.62%, and DenseNet with a score
of 87.23%. The ensemble model also had the highest PREC, REC, and F1-S, as ex-
plained in Table 2. The ROC AUC was not available for the ensemble model as it is



10 Adam M.Ibrahim et al.

Table 1. Summary of results for MobileNet, Xception, DenseNet, MobileNet-LSTM, and
Ensemble models.

Method ACC|PREC|REC | F1-S |Roc Auc
MobileNet 0.9334| 0.9300 |0.9500{0.9400| 0.9900
Xception 0.8862| 0.9200 |0.8700|0.8900| 0.9600
DenseNet 0.8723| 0.8900 |0.8700(0.8800| 0.9300
MobileNet-LSTM|0.9264| 0.9100 [0.9600{0.9300| 0.9800
Ensemble 0.9445| 0.9400 |0.9600{0.9500 -

Table 2. Summary of cancer prediction studies using DL models

Article Cancer Type Methodology Result/Performance
[16] BC Deep neural network Cancer prediction, C-index
0.704
[17] Colorectal cancer VGG16 1Cancer diagnosis, HR 2.3, CI
95 percent 1.79-3.03, AUC 0.69
18 BC Neural Network Cancer prediction, CI 0.67
19 BC CNNs Cancer prediction, ACC 87%
[20] Colorectal cancer VGG19, GoogLeNet, Resnet50, CI 95 classification of 9 tissues
AlexNet, SqueezeNet
[21] Glioblastoma Deep neural network Cancer prediction, ResNet50 :
multiforme 94.90% (+/-3.92%); ResNet34
(34 layers) : 80.72% (+/-
13.61%)
Our Study Breast cancer MobileNet, Xception, Ensemble Learning :94.54%

DenseNet, MobileNet-LSTM
and Ensemble Learning

not a binary classifier. Overall, the ensemble model outperformed the other models
in terms of ACC and other performance metrics.

4 Conclusion

This study demonstrates the potential of digital breast tomosynthesis (DBT) to en-
hance BC detection and diagnosis. Four pre-trained models - Mobilenet, Xception,
Densnet, and Mobilenet-lstm - have shown promising results in identifying and cat-
egorizing cancerous tissue. The ensemble model, which combines the predictions of
the best-performing models, achieved the highest ACC and outperformed all indi-
vidual models. These findings suggest that transfer learning and ensemble learning
techniques can be used to improve the reliability of BC detection and diagnosis, while
accommodating novel imaging techniques.

5 Future Work

Future research in medical imaging and Al for breast cancer detection and diagnosis
could include exploring larger datasets, incorporating clinical and patient-specific
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data, and evaluating proposed models in clinical settings. Additionally, investigating
the potential of DL models for predicting treatment response and recurrence risk
could inform personalized treatment plans. Ethical and regulatory frameworks are
needed to ensure responsible and safe integration of DL models into clinical practice.
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