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Abstract. This study explores the use of Generative Adversarial Networks (GANs) to generate wafer-level Wafer 

Acceptance Test (WAT) and Chip Probe (CP) test data in semiconductor manufacturing processes, and their application 

in relevant process and Design-Technology Co-Optimization (DTCO). The generated virtual silicon data includes device 

performance, physical-electrical characteristics, distribution of wafer process parameters, and implicit information on 

wafer-level features such as uniformity and defects. This approach enables interdisciplinary teams to overcome data 

acquisition barriers while ensuring data confidentiality, and it holds significant potential for the development of advanced 

Electronic Design Automation (EDA) tools in co-optimizing process and chip design flows. 
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1   Introduction 

The Design-Technology Co-Optimization (DTCO) methodology has been widely discussed and applied in 

physical design processes to enhance the overall productivity and competitiveness of semiconductor chips. As 

shown in Fig. 1, it can be analogized to a massive neural network optimization process. Our focus is on optimizing 

productivity through inference, which includes chip monitoring, WAT-CP-SLT testing, feature correlation 

analysis, machine learning, and binning strategies with compensation techniques, among others. On the other hand, 

in the back-propagation optimization phase, we concentrate on optimizing design and process recipes, which 

encompass chip model calibration using actual measurements, process parameters tuning, timing extraction based 

on WAT measurements for the device library, customization and optimization of the device library, On-Chip 

Variation (OCV) regression for local variations, and optimization of design margins and sign-off strategies. 

 



 

Figure 1. Design-Technology Co-Optimization (DTCO) 

 

However, obtaining and exchanging valuable test data is often challenging and poses barriers to the overall 

advancement of industry technologies. Therefore, this study proposes an innovative virtual silicon technology that 

leverages deep learning models to rapidly and accurately generate a large amount of chip data, while reflecting the 

parameter distribution, defects, and features in wafer manufacturing processes. This study introduces a GAN-based 

approach that trains and encapsulates multidimensional WAT and CP test data using compact GAN models to 

generate highly realistic chip data with multidimensional features. This technology plays a crucial role in 

optimizing chip design and improving the manufacturing process. It brings significant benefits such as enhancing 

production efficiency, reducing costs, and improving product quality. 

2   Background 

 

 

Figure 2. Interdependence and Correlation Among Features 

 

Traditional models often simplify events by assuming Gaussian distributions, disregarding the fact that physical 

quantities in real chips often exhibit skewed-normal or log-normal distributions. Additionally, these models 

frequently overlook the interdependencies among vectors in high-dimensional spaces. As shown in Fig. 2, even if 

each dimension's feature follows the distribution of the parent population when projected individually, the 



combined distribution in high-dimensional space may lose the interrelationship between them, somewhat akin to 

rolling dice. 

Due to the multitude of process parameters involved in wafer manufacturing, the relationship between process 

parameters and wafer or chip-level test data becomes highly intricate, making it challenging for traditional methods 

to effectively model and analyze. As shown in Fig. 3, even with a comprehensive understanding of the distribution 

and interrelationship of chip-level features, the lack of wafer-level coordinate information results in the loss of 

characteristics related to the actual wafer fabrication uniformity. This is a prevalent issue in current simulation 

analysis modeling. In fact, the distribution of feature vectors in high-dimensional space lacks authenticity, leading 

to significant discrepancies between production data and simulated data. 

 

 

Figure 3. Distribution of Physical Features of Chips at the Wafer-Level Losing Realism 

 

Existing literature has explored the use of deep learning models for simulating and predicting wafer 

manufacturing processes. Studies [1] and [2] propose a method for wafer defect detection based on a Deep 

Convolutional Generative Adversarial Network (DCGAN). This approach utilizes a DCGAN to learn the 

distribution of defect images on wafers and employs the generated model for defect detection and classification. 

Furthermore, studies such as [3], [4], [5], and [6] demonstrate the potential of Generative Adversarial Networks 

(GANs) for various other applications in the manufacturing domain. 

However, our research differs from existing literature in several aspects. We have successfully achieved the 

generation of highly realistic virtual silicon data and proposed a platform for chip and wafer-level data analysis 

and co-optimization based on GAN models. To better capture the variations in wafer-level processes, we have 

incorporated additional physical features into the construction of the training dataset. 

3   System Architecture 

This study employs a GAN model to capture the uniformity characteristics of defects and parameters in the wafer 



manufacturing process using a large volume of multi-dimensional data. Firstly, we transform the original multi-

dimensional data into two-dimensional images, and set multiple feature dimensions (parameter C), as shown in 

Fig. 4. The size of parameter C is correlated with the network size, and the training time exhibits non-linear growth. 

Based on computations performed on a personal computer CPU, we select the feature dimensionality C to be 

between 10 and 18. 

 

 

Figure 4. Transformation and Integration of Wafer-Level Multidimensional Training Dataset 

 

In this study, we further augment the training dataset using small angle rotation transformations to simulate 

the occurrence of rotational defects and process parameters distributions in the wafer manufacturing process, as 

shown in Fig. 5. This approach enables us to accurately capture the key features in the wafer manufacturing process, 

thereby improving the training effectiveness of the model. 

 

 

Figure 5. Augmentation of Training Dataset through Small Angle Rotation Transformations 

 

In our study, we utilized a Convolutional Neural Network (CNN) to construct a Generative Adversarial 

Network (GAN) model, as shown in Fig. 6, for generating chip data with various process features while 



incorporating potential defects. The generator component of the model consists of multiple convolutional layers 

and Tanh activation layers to generate wafer images. Simultaneously, the discriminator component also includes 

multiple convolutional layers and Sigmoid activation layers to distinguish between real and generated data. These 

design components work together to achieve the goal of generating high-quality silicon data. 

 

 

Figure 6. GAN Model 

 

During the model training, we utilized the gradient descent optimization algorithm to minimize the difference 

between the generated chips and real chips. To enhance the stability of the model, we employed techniques such 

as batch normalization and the LeakyReLU activation function. Through several hundred iterations, our GAN 

model was capable of generating highly realistic silicon data, including the chip's position on the wafer, the 

uniformity of physical features at the wafer level, and the defects present in the chip manufacturing process. These 

training outcomes provide a reliable data foundation for simulating and analyzing the chip manufacturing process. 

4   Experimental Results and Collaborative Optimization Platform 

This section will showcase the generated chip data using the GAN model and conduct a detailed analysis, while 

establishing a Design-Technology Co-Optimization (DTCO) platform. Our dataset consists of approximately 12 

million chip data points, with the exclusion of 3σ outliers and missing chip data, deliberately retaining chips with 

uniformity defects as the training set for the GAN model. In addition to visualizing the data, we also utilize 

quantitative metrics to evaluate the quality of the generated silicon data. For instance, we use Jensen-Shannon 

Divergence to compare the similarity of probability distributions between the generated data and real chip data. 

Additionally, we leverage the Kernel Density Estimation (KDE) metric to quantify the numerical differences 

between probability distributions of different features. These evaluation methods ensure a reliable and accurate 

assessment of the generated silicon data quality. 

To protect the confidentiality of chip technology and wafer process data, we have uniformly normalized the 

charts and figures of our research results, limiting the numerical range between 0 and 1. 



The experimental results show that the scatter plots between the features of the generated silicon data by the 

GAN model and the real chip data are highly similar, capturing the process adjustment and variability in the early 

stages, as shown in Fig. 7. Further analysis using the Jensen-Shannon Divergence index reveals that the probability 

distributions of the generated silicon data closely align with the characteristics of the real data, ranging from 0.98 

to 1.0 across different dimensions, as shown in Fig. 8. 

 

 

Figure 7. Scatter Plots of Features for Generated Data and Real Data 

 

 

Figure 8. Probability Distribution of Generated Data and Real Data for Each Feature 

 

  



Furthermore, the combination of generated data in high-dimensional space still preserves the correlations of 

the original parent population, as shown in Fig. 9. 

 

 

Figure 9. Preservation of Feature Combination in High-Dimensional Space 

 

Figure 10 shows the compromise space between yield and design margin based on the generated large dataset 

of chip data, providing specific guidance for future design recipes and capacity optimization. The model 

demonstrates good stability and generalization performance across different training and testing sets. 

 

 

Figure 10. Probability Density Distribution of Multidimensional Features 



5   Conclusions 

This study presents the application of Generative Adversarial Networks (GANs) in chip and wafer test data 

modeling and silicon virtualization. The study explores the utilization of virtual silicon data in Design-Technology 

Co-Optimization (DTCO) and showcases several related design and process co-optimization schemes. The 

research aims to assist process and chip design engineers in generating more realistic design examples, facilitating 

trade-offs between different process recipes and binning strategies for overall capacity optimization. Additionally, 

the study contributes to the optimization of process parameters and design margins, enabling better energy 

efficiency designs. However, GANs also face challenges, including selecting appropriate generator and 

discriminator architectures and handling higher-dimensional and complex data. Furthermore, training the 

generator and discriminator models requires significant time and computational resources. 

To enhance the transformation of data into trainable models, we employ a method that converts 

multidimensional data into two-dimensional images with multiple feature channels. This approach enables us to 

simulate uniformity defects and variations in process parameters that may occur in wafer manufacturing during 

the training process. The research findings substantiate the effectiveness of this proposed method in supporting 

chip design, product optimization, and process improvement. It leads to enhanced production efficiency, cost 

reduction, and improved product quality, thereby offering valuable contributions to the industry. 

In summary, GANs hold enormous potential for the development of advanced EDA tools. By harnessing 

GAN-generated models to capture the intricate mapping between process and design, we can achieve enhanced 

efficiency in process and design optimizations. Nevertheless, further research and development efforts are 

necessary to address current challenges and limitations. We eagerly anticipate increased attention from researchers 

in this domain, as they continue to explore and propose innovative solutions for the future. 
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