
Fire and Smoke Detection using YOLO through
Kafka

Kai-Yu Lien1, Jung-Chun Liu1, Yu-Wei Chan2, and Chao-Tung Yang1,3

1 Department of Computer Science, Tunghai University, No. 1727, Sec. 4, Taiwan
Boulevard, Xitun District, Taichung, 407224, Taiwan, ROC

lienkaiyu@gmail.com, jcliu@thu.edu.tw,
2 Department of Information Management, Providence University, Taiwan

ywchan@gm.pu.edu.tw
3 Research Center for Smart Sustainable Circular Economy, Tunghai University, No.
1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung, 407224, Taiwan, ROC

ctyang@thu.edu.tw

Abstract. This study is based on deep learning techniques, which com-
pare various detection algorithms and implement the suitable one for
firework detection. The considered factors include streaming, speed, ac-
curacy, and portability. Through a detection algorithm, it can simul-
taneously identify the positions of smoke and fire, providing subsequent
control of fire or other applications. After comparison, we plan to perform
detection results in a streaming manner, where only real-time detection
of the captured scene is carried out. The system can notify people or
teams in need of notification via the network.

Keywords: YOLO, Deep learning, Machine learning, Fire and Smoke
detection, Kafka

1 Introduction

Global warming causes climate change, increasing forest fire risks in flammable
areas like forests and grasslands. Forests and grasslands are essential to the
ecosystem and habitats of animals and plants. Forest fires destroy vegetation
and habitats, causing severe ecological impact. Smoke and fire detection sys-
tems detect smoke and fire quickly, improving response time to prevent forest
fires, and allowing authorities to take measures to protect the environment and
public safety. As a result, we plan to build a system based on vision to detect fire
and smoke. With the development and advancements in manufacturing technol-
ogy and the evolution of algorithms of artificial intelligence, components can be
made smaller, faster, more accurate, and power-efficient advantages, even mak-
ing them into portable devices, let image detection has already had a wide range
of applications. In this paper, we use the YOLO model as our primary devel-
opment environment. We will explore the efficiency and accuracy differences by
comparing the differences and applicability of various algorithm versions. We will
challenge the detection of relatively complex situations - smoke and fire sources



2 Kai-Yu Lien et al.

- as a system and combine it with real-time streaming, Kafka data access, and
edge devices for further exploration.

2 Literature Review

2.1 Machine learning

Machine learning is a rapidly evolving field within AI that involves training
computers to learn from data inputs and optimize algorithms for accurate pre-
dictions on new, unknown data. It has subfields such as supervised learning, deep
learning, and reinforcement learning, which involve training models on labeled
datasets, training neural networks, and using reward systems to guide optimal
decision-making in different environments.

2.2 Image recognition (detection)

Image recognition is a type of machine learning technology in artificial intel-
ligence, which mainly enables machines to automatically recognize objects in
images, such as objects, people, animals, scenes, texts, and so on. Currently, the
common related technologies and methods for image recognition include convo-
lutional neural networks, object detection, YOLO, image segmentation, feature
extraction, PyTorch, and TorchVision.

2.3 Kafka

Kafka is an open-source distributed event streaming platform developed by
Apache, with the ability to process and store data streams reliably and effi-
ciently. It is designed to handle large-scale real-time data streams by providing a
unified, high-throughput, low-latency platform for data processing. Kafka oper-
ates on a publish-subscribe model, where producers publish messages or events
to topics, and consumers subscribe to those topics to receive the messages. The
platform is designed to handle massive amounts of data and can scale horizon-
tally by adding more brokers, which are the servers that store and manage the
data, also Kafka can be used to manage data from multiple sources, includ-
ing sensors, web applications, and databases. The platform can process these
streams of data quickly and efficiently, making it ideal for real-time analytics
and decision-making.

2.4 YOLO algorithm

YOLOv5 has diverse applications and support like Pytorch, CUDA acceleration,
and Tensor support. This paper focuses on comparing YOLO (You Only Look
Once) and extending its functionality for future data applications. This includes
comparing algorithmic differences between various versions and their accuracy



Hamiltonian Mechanics 3

and efficiency. YOLO is a fast and accurate object detection system that simul-
taneously performs comprehensive inferences on entire images through regions
and bounding boxes. Unlike sliding window detection or region proposal meth-
ods, it can see the entire image during training and testing. Therefore, YOLO
can conceal globally interrelated class information within its encoding.

In this study, we chose three models from the YOLO series: YOLO v5, v7, and
v8. The architecture is based on Region-Based Convolutional Neural Network
Layers and is composed of two parts: feature extraction and detection. The
feature extractor is a convolutional neural network responsible for extracting
features from the image, with down-sampling for feature extraction from local
to global regions. The detection head is responsible for mapping these features
to object positions and categories and restoring them to their original size.

3 Data Collection and Experimental Results

Fig. 1. System architecture

This research begins with the development of various algorithms on the x86
computing platform, and training and testing these algorithms in a Windows
environment. The trained models are analyzed and compared to evaluate the
differences between the algorithms. The advantages and disadvantages of each
algorithm are compared quantitatively. The most suitable algorithm is selected
for further development and integration with real-time streaming, data storage
in Kafka, and the use of portable EDGE devices such as Jetson Xavier NX.
The training process includes adjusting model size, training frequency, training
content, parameter tuning, etc. to increase the accuracy of the model. The system
architecture of this study is shown in Fig. 1.

We want to detect smoke and fire using image detection, as traditional meth-
ods are expensive and limited in range.In this study, we used a sample dataset



4 Kai-Yu Lien et al.

consisting of two categories, fire, and smoke to perform feature extraction and
labeling on it. By comparing the model performance using different feature ex-
traction and labeling methods, we found their impact on model accuracy and
generalization ability. Additionally, we analyzed the impact of data distribution
on model performance, including the impact of different sample quantities and
category ratios on model performance. The simplified research process is divided
into data collection, processing, model training, and benchmarking the result of
models using metrics in machine learning such as Accuracy, Loss, Confusion
Matrix, etc.

3.1 Training

In this study, the various versions of standard-sized models were first trained
using the recommended training frequency in the paper, and the accuracy of the
initial training of each version was compared to determine which version would
be used as the primary detection method for this study, then performed feature
extraction and labeling on the dataset and investigated the impact of feature
extraction and labeling on model performance and analyzed the impact of data
distribution on model performance.

3.2 Server Setup

We have set up four virtual machines running Ubuntu 22.04 Server version on
an ESXi server, each with 4 cores, 8GB RAM, and 100G storage. Three of
the virtual machines are used as containers for Kafka, and one is used for web
hosting. During the setup process, we limited the disk speed of the three Kafka
virtual machines to 100 IOPS to simulate the operation of Kafka on multiple
machines and test its write performance. As we mainly transmit image data,
there is almost no delay in reading and writing, and the data can be quickly
transmitted to the host. The images can be displayed on the web page with a
low response time (about 3 seconds).

3.3 Data Collection

We use Google Search, Kaggle datasets, and crawler to collect approximately
3,100 images of fire and smoke, then use data augmentation techniques to expand
the dataset to 15,000 images for training, then split into training and testing sets,
typically with 80% of the data for training and 20% for testing. The testing set
may be further divided into either the entire validation set or a 10% validation set
and the remaining testing set. However, due to the limited number of samples
in the dataset, we enhanced the images and split them into training (85%),
and validation (15%) sets with a pre-processing model size of 640x640, and
keep the quantity of fire and smoke samples were balanced as much as possible,
which is approximately 8000 images per class used for training on average. To
meet the requirements, In the data augmentation process, we applied rotation



Hamiltonian Mechanics 5

enhancement to images taken from different angles to address the focus blur
issue and then trained the dataset with default 300 iterations on YOLO v5, v7,
and v8, and compared their difference.

3.4 Experimental Results

The actual training results were observed to be similar to our expectations, with
better accuracy in fire detection and not-so-good results in smoke detection,
although still better than expected. The reason may lie in the fact that smoke
is more complicated, Moreover, its irregular shape and various factors such as
color, lighting conditions during photography, and concentration (translucent),
which may easily be confused with the environmental background can lead to
uncertainty.

Fig. 2. F1 curve and PR curve.

In the YOLO v5 section, we trained the model an image size of 640. Our
results showed that the precision (P) and recall rate (R) for smoke and fire
were 0.9 and 0.7, respectively. Although the accuracy of smoke detection was 0.2
mAP higher than fire detection, the average accuracy of fire detection during
actual testing was around 0.6, while the accuracy of smoke detection was around
0.4 when it was correctly classified. Unfortunately, it was often observed during
actual testing that smoke was not detected and ignored by the model. In Fig.
2, we can see that even in the small fire or smoke is still detectable in the long
distance of the small pixel.

We will use YOLOv5, an object detection model that is intended for real-
time streaming video and can use in a real-time environment, It offers five models
that come with differing depth and width multiple to control the network. These
differences have a significant impact on the performance and suitability of the
YOLOv5 model for different environments. In the following table, we can see the
detection speeds of various sizes of YOLO v5 models. We tested these models
on an x86 PC platform with an image processing core of RTX3090. As we are
running our models on embedded platforms, we tested YOLO v5 on an Nvidia
Jetson NX to compare the original processing speed without any accelerators.
As a result, the speed of the YOLO v5m model starts to decrease rapidly but
accuracy does not significantly improve. since high resolution can lead to band-
width waste and transmission delays, and a high frame rate is not necessary,



6 Kai-Yu Lien et al.

we limit our image so the system can handle about one frame per second. This
approach is suitable and sufficient for our experimental environment and prac-
tical use, where a difference of a second in fire status is not significant. For this
reason, we implement the YOLO v5m mode and plan to optimize its detection
speed in the future.

Table 1. TABLE I. SPEED BETWEEN YOLO V5 MODELS

Model Image Video Video

(RTX 3090) (Stream @ RTX 3090) (Native Jetson NX)

V5n 16ms 7.8ms (128FPS) 590ms (1.7 FPS)

V5s 12ms 7.0ms (142FPS) 760ms (1.3 FPS)

V5m 16ms 8.0ms (125FPS) 2000ms (0.5 FPS)

V5l 15ms 10.1ms (99FPS) 3500ms (0.3 FPS)

V5x 22ms 13.5ms (74FPS) 5000ms (0.2FPS)

Table 2. ACCURACY BETWEEN YOLOV5 MODELS

Scenes Fire Smoke

Model Accuracy S B Accuracy S B

YOLO v5m (Enforced) 0.750̃.98 V O 0.70̃.98 V O

YOLO v5n 0.30̃.72 O O 0.30̃.89 O V

YOLO v5s 0.20̃.77 O O 0.30̃.92 O O

YOLO v5m 0.30̃.85 O O 0.40̃.95 O X

YOLO v5l 0.40̃.89 V V 0.40̃.96 V V

YOLO v5x 0.40̃.88 O V 0.40̃.95 O V

Accuracy = (TP + TN)/(TP + FP + FN + TN). (1)

We utilize the recall and precision rates as metrics to evaluate the proportion
of correctly identified accuracy among all the objects present as the ground
truth and estimate (1) and check the lowest and highest result in each test on
validation, test, strange and live datasets, Table II shows that increasing the size
of the model beyond YOLO v5m does not lead to a significant improvement in
accuracy. Instead, it results in higher costs in terms of image processing time and
memory resources, while also reducing the detection speed. We chose to optimize
the YOLO v5mmodel to achieve an accuracy of 0.98 while maintaining a speed of
around 1 FPS. This approach reduces the payload of transmission and processing
and minimizes the risk of excessive data duplication, which would rapidly fill up
our storage container and increase the load on the Kafka server. As a result, we
can collect useful data continuously without requiring too many resources.



Hamiltonian Mechanics 7

4 Conclusion and Future Works

With the continuous development of machine learning detection technology, we
should not blindly pursue the latest version but rather conduct experiments
and tests to compare and find the development environment and models that
are suitable for our application system. In this experiment, the latest version
achieved the best results for this task and its algorithm was optimized, but the
resulting more closed code and relatively difficult code modification also bring
challenges. Although this process may be time-consuming and may use older
technology, it is necessary to ensure the practicality and real-time effects of the
system. Afterward, we can focus on optimizing and applying the model, as well
as studying the new versions.

Currently, this study has successfully implemented firework detection on the
YOLO series model. And through Kafka, photos can be transmitted instead of
text only. Although more time was spent on encoding and non-optimal encoders
resulted in some wasted resources during transmission, this model can accurately
recognize different forms of fires, including large flames and small fires, and can
also detect the presence of smoke. Even occurs outdoors and the source is hidden
or uncleared, the algorithm can provide different prompts through additional
functions when it detects thick smoke by adding the smoke detection model
function that prevents the system from misjudging some light sources similar to
flames to improve the accuracy of detection results. The original images are also
kept for subsequent modifications and verification.

References

[1] . Redmon, S. Divvala, R. Girshick, A. Farhadi, “You Only Look Once: Unified, Real-
Time Object Detection,” Computer Vision and Pattern Recognition, May 2016.

[2] Online]. Available: https://github.com/ultralytics/yolov5
[3] Online]. Available: https://github.com/ultralytics/ultralytics.
[4] -K Kim and C-S Jeong, ”LARGE SCALE IMAGE PROCESSING IN REAL-TIME

ENVIRONMENTS WITH KAFKA”, Proceedings of the 6th AIRCC International,
2017

[5] . Frizzi, R. Kaabi, M. Bouchouicha, J.-M. Ginoux, E. Moreau and F. Fnaiech,
”Convolutional neural network for video fire and smoke detection,” in IECON 2016
- 42nd Annual Conference of the IEEE Industrial Electronics Society, Oct. 2016.

[6] . Namozov, Y. I. Cho, ”An Efficient Deep Learning Algorithm for Fire and Smoke
Detection with Limited Data,” Advances in Electrical and Computer Engineering,
vol. 18, no. 4, pp. 121-128, 2018.

[7] . Bradski, F. T. von Kleist-Retzow, T. Tiemerding, P. Elfert, O. C. Haenssler ”The
OpenCV Library. Dr. Dobb’s Journal of Software Tools,” Journal of Computer and
Communications, vol. 4, no. 3, pp. 25-33, March 2016.

[8] . Viswanatha, R. K. Chandana and A. Ramachandra, ”Real Time Object Detection
System with YOLO and CNN Models: A Review,” Computer Vision and Pattern
Recognition (cs.CV); Image and Video Processing (eess.IV), Jul 2022.

[9] -Y Wang, A.. Bochkovskiy, H-Y .M Liao , ”YOLOv7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors,” Computer Vision and Pattern
Recognition, Jul 2022.


