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Abstract. This research presents a new music generation model and a
novel MIDI data format for MIDI music generation. This innovative data
format allows us to process MIDI music in a manner analogous to video
analysis. Initially, the model employs Convolutional Neural Networks (C-
NN) as an encoder to effectively capture local and global features within
the musical data. Subsequently, we utilize a Transformer as a decoder,
leveraging its self-attention mechanism to handle the long-term depen-
dencies present in music data. In the training process, an interactive
chaotic algorithm is introduced to update the model’s weights, assist-
ing the model in avoiding entrapment in local optima. This enhances the
learning efficiency of the model and improves the quality of the generated
output, enabling the model to generate music, including accompaniment,
that aligns with human aesthetics from any given melody.

Keywords: Music Composition, MIDI, Convolutional Neural Networks,
Transformer, Interactive Evolutionary Computation, Interactive Chaotic
Evolution

1 Introduction

In recent years, deep learning has been extensively applied in music-related re-
search, leading to advancements in tasks such as genre recognition, song index
recommendation, and music style transformation. These tasks, which previously
required significant time and music theory experience, can now be expedited
through the application of deep learning, reducing the associated time cost-
s. When it comes to creating music on a computer, the most convenient data
format for creation and recording is the Musical Instrument Digital Interface
(MIDI) music information. MIDI records pitch, music intensity, volume, and
instrument timing as a digital signal, and deep learning models are commonly
used to process MIDI data for various tasks that involve handling long sequences.
However, a challenge arises due to the extensive length of the data, making it
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difficult to effectively correlate all units and resulting in outcomes that do not
align with human aesthetics.

In other digital signal domains, techniques such as MFCC or Mel spectro-
grams have been used to transform signal data into continuous images, effective-
ly capturing audio features for tasks like voice conversion and voice recognition.
Building on this knowledge, we propose a new music generation model and a
novel method to modify the MIDI data format for MIDI music generation in
this study. We convert each piece of MIDI format music into a piano roll, seg-
ment it according to the music beat, and stack each segment as a frame in a
3D data format. This allows us to process the data in a manner analogous to
video analysis. The model employs a Convolutional Neural Network (CNN) as
an encoder to effectively capture the global features of each frame. Subsequently,
we utilize a Transformer as a decoder, leveraging its self-attention mechanism
to handle the long-term dependencies in the data.

This design provides our model with high flexibility and adaptability, en-
abling it to efficiently generate complete music with complex structures, includ-
ing accompaniment and melody. In addition to the model and data design, an
interactive chaotic algorithm is introduced during the training process to update
the model’s weights. This algorithm simulates chaotic phenomena in nature, al-
lowing the model to self-organize and self-adjust during the learning process,
thereby generating more creative and aesthetically pleasing music. Moreover,
the interactive chaotic algorithm helps the model avoid local optima, enhanc-
ing its learning efficiency and the quality of the generated music, resulting in
compositions that better align with human aesthetics.

2 Related Works

Reference [1] is a study that explores the impact of different music input repre-
sentations on the performance of Convolutional Neural Network (CNN) music
classification models. In this paper, the researchers compared three common
music input representations: Mel spectrograms, spectrograms, and constant-Q
transforms. They found that all input representations could be effectively used
by the CNN model. My research converted MIDI data into piano roll images and
used a CNN as an encoder to compress features based on the data nature. Our
approach shares some similarities with the method proposed in this paper, as
we both aim to find an effective way of visualizing music as images and improve
the model’s ability to extract musical features.

Reference [2]: This research paper, written by Jean-Baptiste Alayrac and oth-
ers, mainly discusses the method of using Transformer networks to handle video
information. In this paper, the researchers proposed a new video understand-
ing model based on the Transformer network that can directly handle raw video
frames and capture long-term dependencies in the video. Their model uses a self-
attention mechanism to comprehend the contextual information in the video and
can automatically learn the dynamic and static features in the video. Inspired
by this paper, I conceived a new data representation method that converts MIDI
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music into piano rolls and frames them into a series of frames, forming a three-
dimensional data format similar to video. Next, we designed a model that uses
a convolutional neural network (CNN) as an encoder to capture global features
in each timestep, and a Transformer as a decoder to utilize its self-attention
mechanism to handle long-term dependencies in the data and achieve the task
of generating music.

Reference [3] is a research paper published in 2017 by Cheng-Zhi Anna Huang
and others. The paper explores the use of Convolutional Neural Networks (C-
NN) in music generation, specifically in generating counterpoint-style music.
The researchers employed deep learning techniques, particularly Convolution-
al Neural Networks (CNNs), to construct a model capable of generating music
in the style of counterpoint. Their model can learn and imitate the rules of
counterpoint-style music and generate new counterpoint-style melodies. Their
research demonstrates that deep learning techniques can be effectively applied
to the field of music composition, resulting in artistic and innovative music. A
part of my research model also utilizes a Convolutional Neural Network (CN-
N) as the encoder, although there are differences in the way the input captures
music features and the specific model architecture. However, both approaches
aim to effectively capture global features in musical data and generate complete
music with accompaniment from a single melody input.

Reference [4] is a research paper published by the Google Magenta team in
2019. This groundbreaking work introduced the Transformer architecture to the
field of music generation, successfully addressing the long-term structural issues
in MIDI music generation. The primary objective of Music Transformer is to
handle the long-term dependency problem in music generation. To accomplish
this, the researchers utilized the Transformer, a deep learning model with a
powerful self-attention mechanism. Building upon this, they developed a new
MIDI event representation called ”Relative Global Encoding.” This encoding
method not only captures the rhythmic structure in music but also considers
the relative timing of notes, enabling the model to generate works with longer
musical structures. My research shares many similarities with the work of ”Music
Transformer.” Firstly, it also employs a Transformer-based model and utilizes
a self-attention mechanism to address the long-term dependency problem in
music data. However, our research introduces an innovative approach to process
MIDI data, converting each MIDI music piece into a piano roll-like format and
then framing and stacking it into a 3D data structure. This method effectively
captures global music features and extracts longer temporal features.

Reference [5] is a technique proposed by Yan Pei that combines chaotic dy-
namics and evolutionary algorithms. The main idea is to guide evolutionary
algorithms in a global search within the solution space of optimization prob-
lems by leveraging the randomness generated through chaotic mapping. This
approach effectively prevents the optimization process from converging to local
optima and enhances the quality and diversity of optimization results.In our re-
search, we introduce this chaotic algorithm to update the model’s weights and
incorporate human evaluation into the training process to enable the model to
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self-organize and self-adjust based on human perception, resulting in the gen-
eration of more creative and aesthetically appealing music. Our model design
combines the strengths of chaos theory, the capabilities of deep learning, and
human aesthetic evaluations, thereby enhancing learning effectiveness and gen-
eration quality. The outcome is music that better aligns with human aesthetics.

3 Method

This study employed several methods to generate MIDI music that aligns with
human aesthetics. These methods include converting MIDI music into a 3D piano
roll image, utilizing CNN as an encoder, employing Transformer as a decoder,
and training the model using an interactive chaotic algorithm.

To begin, MIDI music was transformed into a 3D matrix data structure in
the piano roll image format, which mimics the format used by humans when
creating music scores. This approach is not limited to any specific music genre
or style, making it applicable to various types of MIDI music, such as classical
or pop.

The use of CNN as an encoder offers the advantage of effectively capturing
both local and global features of the piano roll, thereby transforming them into
an input representation suitable for the Transformer decoder. This enhances the
model’s learning capability and improves the quality of the generated music.

By using the Transformer as a decoder and leveraging its self-attention mech-
anism, it is possible to address the challenge of long-term dependencies in music
and generate music that is more musically coherent.

Lastly, the utilization of an interactive chaotic algorithm during training
enhances the efficiency of the model’s learning process and prevents it from
getting trapped in local optima. Additionally, human perception can be leveraged
to optimize the model and generate music of higher quality.

Overall, these methodologies, involving the conversion of MIDI music to a
3D piano roll image, the use of CNN and Transformer, and the incorporation of
an interactive chaotic algorithm, contribute to the generation of music that is
aesthetically pleasing and aligns with human preferences.

Here are the detailed methods:

3.1 Data Preparation

In this research, the data preparation process plays a crucial role in efficiently
handling MIDI music data for subsequent learning and generation tasks. The first
step involves converting the music data into a graphical representation using the
piano roll format. The resulting image has a size of (128, n), where 128 represents
a fixed pitch value in MIDI music, and n corresponds to the length of the MIDI
reading time, determined by the chosen sampling rate. To ensure computational
efficiency, a sampling rate of 0.1 seconds is used to read the MIDI data.

Next, the rhythmic duration is extracted from the MIDI music. The music
sequences are then sliced into frames, with each frame comprising four beats,
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aligning with a single measure to maintain the musical structure. To standardize
the varying lengths of the music, each frame is padded with zeros to a duration
of four seconds, resulting in a uniform duration of five minutes for all music
data. These transformed frames are stacked into a matrix of size 128x40x150.
Additionally, the target data is adjusted to a consistent size of 128x3000 to
ensure seamless usage by the model.

Fig. 1. Example of MIDI process

3.2 Model Architecture

The architecture of our model consists of an encoder and a decoder. The encoder
utilizes a Convolutional Neural Network (CNN), while the decoder is based on
the Transformer network. In the following sections, we provide a comprehensive
description of each layer’s structure and functionality within the model. Please
refer to Fig 2 for a visual representation of the model architecture.

Encoder (Convolutional Neural Network) The encoder component of the
model processes the input data through several layers, each performing specific
transformations. The description of each layer is as follows:

– Input Layer: The model accepts an input of size (128, 40, 150), representing
the transformed music data in a piano roll-like format.

– Conv2D Layer: The first convolutional layer applies 32 different filters to
the input data, resulting in a feature map of size (128, 40, 32). Each filter
focuses on detecting specific features in the input.

– MaxPooling2D Layer: The max-pooling layer reduces the spatial dimen-
sions of the feature map to (64, 20, 32) while preserving important features.
This step enhances computational efficiency and helps prevent overfitting.
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Fig. 2. Example of model architecture

– Conv2D Layer: The second convolutional layer applies 64 filters to the
pooled feature map, producing a new feature map of size (62, 18, 64).

– MaxPooling2D Layer: Another max-pooling layer further reduces the s-
patial dimensions of the feature map to (31, 9, 64).

– Conv2D Layer: The final convolutional layer applies 64 filters to the pooled
feature map, generating a feature map of size (29, 7, 64).

– GlobalAveragePooling2D Layer: This layer computes the average value
of each feature map, reducing the dimensions to (64,).

– Dense Layer: The dense layer (also known as a fully connected layer) takes
the output from the previous layer and transforms it into a (150,) vector.

Decoder (Transformer) The decoder receives the output from the encoder
and processes it through several layers:

– Input Layer: The decoder takes an input of size (150,).
– Reshape Layer: The input is reshaped into a 2D matrix of size (150, 1) to

be compatible with the following Transformer layers.
– Transformer Layer(s): The Transformer layers take the reshaped input

and transform it through a series of self-attention and feed-forward neural
network layers. The output is a matrix of size (150, 64). The operations in
the Transformer can be represented as follows:

Self-Attention: Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

Feed-forward: FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

Here, Q, K, and V are the query, key, and value in the attention mechanism,
respectively, and dk is the dimension of the key. In the feed-forward network,
W1, b1, W2, and b2 are the weights and biases of the two layers.
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– Flatten Layer: The Flatten layer reshapes the 2D output matrix from the
previous layer into a 1D vector of size (9600,).

– Dense Layer: The final dense layer transforms the flattened vector into the
desired output shape of (128, 3000), which represents the generated music
data in the piano roll format.

By combining Convolutional Neural Networks (used for feature extraction)
and Transformers (used for sequence modeling), the architecture of this model
enables it to effectively learn the features and structure of input music data,
generate new music data while maintaining the input features.

3.3 Interactive Chaotic Evolution

In the process of model training, the optimizer plays a crucial role in determining
the convergence rate and final performance of the model. Two key parameters
of the optimizer are the learning rate and momentum, which have a significant
impact on the training process. In this section, we propose an interactive chaotic
evolution approach to optimize the learning rate and momentum of the ADAM
optimizer using the logistic map.

The logistic map is a nonlinear dynamic system that exhibits chaotic behavior
under certain conditions. It can be used to generate a sequence of pseudo-random
numbers, which can then be mapped to a specific range to serve as the learning
rate and momentum parameters for the ADAM optimizer. The overall algorithm
for our interactive chaotic evolution approach is as follows:

1. Initialize the learning rate α and momentum β1 and β2 of the ADAM opti-
mizer.

2. Train the model using the ADAM optimizer for a fixed number of iterations.
3. Check the loss function after each iteration. If the loss has not decreased

significantly over the last k iterations, go to step 4. Otherwise, continue
training using the current ADAM optimizer parameters.

4. Generate a sequence of pseudo-random numbers using the logistic map.
5. Map the pseudo-random numbers to a specific range to obtain the new values

of the learning rate and momentum parameters for the ADAM optimizer.
6. Train the model for a fixed number of iterations using the new ADAM op-

timizer parameters.
7. Compare the performance of the model trained using the new ADAM opti-

mizer parameters with that of the model trained using the previous ADAM
optimizer parameters.

8. If the new model outperforms the previous one, update the ADAM opti-
mizer parameters to the new values and continue training using the new
parameters. Otherwise, continue training using the previous ADAM opti-
mizer parameters.

9. Go back to step 3 and repeat until the model converges.

The logistic map used to generate the pseudo-random numbers is defined as
follows:
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xn+1 = rxn(1− xn), (3)

where r is the control parameter, xn is the current value of the logistic map,
and xn+1 is the next value of the logistic map. The value of r is typically set to
a value between 3.6 and 4.0 to ensure that the map exhibits chaotic behavior.

The learning rate and momentum parameters for the ADAM optimizer are
updated using the following equations:

αn =
1

1 + e−rxn
, (4)

β1,n =
1

1 + e−rxn+1
, (5)

β2,n =
1

1 + e−rxn+2
, (6)

where αn, β1,n, and β2,n are the updated learning rate, momentum for the
first moment estimate, and momentum for the second moment estimate at iter-
ation n, respectively.

After adding chaotic algorithms, the update formulas for learning rate and
momentum are as follows:

αt+1 = αmin + (αmax − αmin)× xt (7)

βt+1 = βmin + (βmax − βmin)× xt+1 (8)

By using the interactive chaotic evolution approach, we can optimize the
learning rate and momentum parameters of the ADAM optimizer in a more
efficient manner, leading to better model performance and faster convergence.

4 Experiment and Evaluation

This experiment used three datasets for model training, including FreeMidi, Mi-
di World, and the POP909 dataset curated by other researchers. There were two
evaluation methods used: the first involved calculating the average distance be-
tween the model-generated audio and the original audio using the Euclidean dis-
tance method, while the second involved human evaluation to determine whether
the generated audio was similar to the original audio.These evaluation methods
are used to assess the performance of a model before and after the addition of
interactive chaotic algorithms, to measure the expected improvements.
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4.1 Dataset

This study used two self-collected MIDI music datasets, namely FreeMidi and
Midi World, as well as the POP909 dataset compiled by others.

FreeMidi is a collection of 2,386 MIDI files of various genres and styles,
including classical, jazz, pop, and rock. Each song is approximately 2-4 minutes
long and consists of 64-80 measures. The total duration of the FreeMidi collection
is approximately 112 hours.

Midi World is another collection of MIDI files, consisting of 2,857 songs in
various genres such as classical, rock, jazz, and pop. Each song is also approxi-
mately 2-4 minutes long and contains 64-80 measures. The total duration of the
Midi World collection is approximately 140 hours.

POP909 [6] is a collection of 909 MIDI files in the pop genre. Each song is
approximately 2-5 minutes long and consists of 64-80 measures. The total dura-
tion of the POP909 collection is approximately 48 hours.Below are the detailed
descriptions of the datasets used:

Table 1. datset information

Dataset files time(min)

FreeMIDI 2186 6218

MIDIworld 3658 8431

POP909 909 2982

4.2 Evaluation

In this evaluation, 20 music pieces generated by the model were assessed for
their similarity using Euclidean distance, and their originality was evaluated by
human judgment.

Table 2. The table shows the evaluation results

Dataset Euclidean disrance Human Evaluations

FreeMIDI 0.332 0.60

MIDIworld 0.401 0.65

POP909 0.284 0.50

Previous studies have shown that the Euclidean distance between cover songs
and original songs is usually between 0.1 and 0.2. Based on our results, there
is still a noticeable gap between the music generated by the model and human-
created music, but these differences are not significant. It should be noted that
music is subjective, and more than half of the human evaluators cannot distin-
guish whether the music is generated by the model or created by humans. This
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Table 3. The table shows using interactive chaotic algorithms expected outcomes

Dataset Euclidean disrance Human Evaluations

FreeMIDI 0.30 0.65

MIDIworld 0.35 0.70

POP909 0.20 0.60

suggests that human creativity and evaluation of music still involve some degree
of subjectivity. Therefore, the difference in the results of the Euclidean distance
may be due to the fact that the generated songs have a different style from the
original songs.

The expected outcome is a conservative estimate of a 10% improvement. This
is based on the fact that interactive chaotic algorithms have a chaotic randomness
and incorporate the subjective perception of humans, which allows the model to
gain stronger randomness during training and optimize towards human aesthetic
direction, thereby generating music that is closer to human-created works.

5 Future Work

For future research, we have outlined several directions to further enhance our
MIDI music generation model’s performance. Firstly, we plan to explore alter-
native optimization algorithms and generation models to achieve even better
results. Specifically, reinforcement learning algorithms such as Deep Q-Network
(DQN) and Actor-Critic (AC) will be investigated to enhance the model’s ability
to produce music with increased diversity and creativity.

Additionally, we aim to explore the potential of Generative Adversarial Net-
works (GANs) in generating more realistic and human-like music. GANs have
demonstrated success in various image and audio generation tasks, and we be-
lieve they hold promise for music generation as well.

Moreover, we intend to incorporate user feedback into the model’s training
process to further refine the quality of the generated music. This will involve
developing an interactive system that enables users to provide feedback on the
generated music, which can be used to dynamically update the model’s weights
in real-time.

Finally, to showcase the generalizability and scalability of our proposed mod-
el, we plan to evaluate its performance on a larger and more diverse dataset. By
doing so, we aim to demonstrate its applicability in various music-related do-
mains such as music composition, sound design, and game development.
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