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Abstract. In this study, we propose a novel pre-learning approach for
genetic programming (GP) that aims to investigate the effect of the
probability of being selected for each operator. Furthermore, we present
a technique that combines chaos theory and searches for a relatively
good possibility mapping for each operator using one-dimensional chaotic
mapping. We conducted several sets of comparative experiments on real-
world data to test the viability of the proposal. These experiments in-
cluded comparisons with conventional GP, examination of the impact of
various chaotic mappings on the proposed algorithm, and implementa-
tion of different optimization strategies to find the relative optimal proba-
bility mapping. The experimental results demonstrate that the proposed
method can achieve better results than conventional GP in the tested
dataset, without considering the total quantitative calculation amount.
Through statistical tests, it has been proven that the proposed method
is significantly different from the conventional method. However, the dis-
cussion regarding the circumstances under which the proposed method
can obtain better results when the total calculation amount is limited is
not yet fully explored due to the small-scale nature of the experiments.
Our future studies will focus on improving and fully discussing this idea.

Keywords: Genetic programming, Chaos theory, Symbolic regression,
Evolutionary computation, Pre-learning

1 Introduction

Symbolic regression (SR) is a relatively specialized regression problem that re-
quires consideration not only of the results but also of the structure. The goal
of symbolic regression is to generate a set of formulas that can be used to fit
the target data. The result is visible and understandable, such as generating an
equation equivalent to

√
x5
0 + x2

1 − x3
2. Genetic programming (GP) is a method

that can generate explicit solutions without prior assumptions and only requires
⋆ Dr. Yan Pei is the corresponding author, peiyan@u-aizu.ac.jp
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knowledge of the basic components of the problem. Therefore, it is well-suited
for solving symbolic regression problems [2].

In conventional tree-based GP, there are two categories of nodes: operator
nodes(e.g. addition, subtraction, multiplication, division, etc.) and termination
nodes, each with several types of operators and terminal nodes, respectively.
During initialization and mutation, a random selection is made to decide what
type of node the new node should be. At this point, the probability of each
operator node being selected is equally likely.

However, there has not been extensive discussion on the selection of GP
operators. When exploring non-prior knowledge using Symbolic Regression (SR),
we do not know what basic components should be included in the target system.
Therefore, we should provide enough choices for the initial operator set. But if
the operator set is too large, the solution space will also be too large, which affects
the algorithm’s convergence performance. On the other hand, if the operator set
is too small, the fitting of the target problem will not be accurate [8]. Therefore,
this paper further discusses the selection of GP operators.

The motivation for this study is that certain operators should not be em-
ployed for specific problems as they can make the solution more complex and
difficult to converge to. Therefore, it would be effective to propose a scheme
that provides different probabilities of the operator being selected for different
problems and data.

In response to this view, we propose a pre-learning method based on chaos
theory. The aim is to find one or several sets of probability mappings that make
it easier to obtain better answers from the searching space of different operator
node possibilities. To provide more realistic and applicable results, this paper
uses real-world data for experimentation and research.

Furthermore, we explore the use of chaotic systems to optimize our proposed
algorithm. We conduct three sets of comparative experiments, including com-
paring the performance of our proposed algorithm with the original algorithm,
exploring how different chaotic systems affect the algorithm’s performance, and
analyzing the algorithm’s learning performance under controlled computational
conditions. These experiments provide insights into the optimal conditions for
the proposed algorithm and its sensitivity to the chaotic system used.

After the introduction, we present related studies in Section 2. In Section 3,
we provide a detailed description of our proposed algorithm and two different im-
plementation methods. Section 4 describes three sets of experiments conducted
from different perspectives to analyze the proposed algorithm, and we discuss
the experimental results. Finally, we summarize the contributions of this study
and highlight current issues and future directions.

2 Related Works

2.1 Genetic Programming

Genetic Programming (GP) [2] is an evolutionary algorithm that utilizes biolog-
ical phenomena such as heredity, mutation, selection, and crossover to generate
solutions to problems. Unlike other optimization algorithms, GP resembles more
of a machine learning method as it uses hierarchical data structures to generate
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solutions. In recent years, some studies have focused on optimizing algorithms
by leveraging external information.

For instance, Ying Bi, Bing Xue, and Mengjie Zhang decomposed the genetic
programming problem into multiple sub-problems, which were solved separately,
and their final results were combined [3]. The advantage of this approach is
that it can reduce the search space’s size and speed up the algorithm’s running
time, leading to improved performance. While various means exist to improve
performance outside the algorithm, we focus on optimizing the algorithm itself
by exploring the impact of operators on its overall performance.

Hengrui Xing, Ansaf Salleb-Aouissi, and Nakul Verma explored the use of
convolutional neural networks to convert data into visual representations and
then discussed the probability of operators being selected too [8]. However, they
did not utilize real data for experiments. Moreover, we believe that converting
data into images and pre-training neural networks for images is not an efficient
approach. Thus, we propose a different implementation idea.

Overall, our research focuses on optimizing the genetic programming algo-
rithm’s performance by analyzing the impact of operators on its overall perfor-
mance. We believe that our approach can lead to significant improvements in
the algorithm’s performance, thereby enhancing its effectiveness and efficiency
in solving problems.

2.2 Chaos Theory for Optimization Algorithm

The chaotic system refers to a class of dynamical systems that demonstrate in-
tricate, unpredictable behavior in both time and space. Such systems exhibit
behavioral characteristics, including high sensitivity to initial conditions, deter-
ministic chaos, and adaptability, which render them fascinating objects of study
in various fields of science and engineering [9].

Numerous studies have investigated the utilization of the ergodicity and non-
repetition of chaotic systems to enhance the performance of optimization algo-
rithms. For instance, recent research has proposed an approach that enhances
the performance of JADE by utilizing chaotic systems to generate more diverse
initial populations [4]. In addition, CE is a new algorithm based on differential
evolution that leverages the ergodic motion in the search space to improve per-
formance by exploiting the ergodicity of chaos [5]. These studies suggest that
the characteristics of chaos can enhance search efficiency to a certain extent
for random-based optimization algorithms. By introducing chaos into the opti-
mization process, the search space is explored more efficiently, leading to better
solutions. Based on past research, we have reason to believe that the utiliza-
tion of the characteristics of chaos can enhance the performance of optimization
algorithms, especially for random-based optimization algorithms.

3 Different Probability Mapping for Operators Are Used
in Genetic Programming

As mentioned previously, a novel approach called "Different Probability Maps for
Operators in Genetic Programming" (DPMOGP) has been proposed to investi-
gate the impact of different operator selection probabilities on GP performance.
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The key idea behind DPMOGP is to use an appropriate optimization strategy to
perform pre-learning and generate one or more probabilistic mappings for differ-
ent operators, which are then saved to initiate the formal GP process. During the
initialization and mutation phases, when a new operator node is generated, one
of the stored probability mappings is selected using a weighted random search
via the roulette algorithm to determine which operator the new node should be
assigned to. The algorithmic implementation of DPMOGP is shown in Algorithm
1.

It can be seen that this will be an optimization problem to find some prob-
ability mappings that can relatively easier to generate the higher fitness indi-
vidual from the searching space. Thus, DPMOGP is a versatile concept that
can be implemented in various ways. At present, we have implemented two ver-
sions of DPMOGP: random search-based DPMOGP (RS-DPMOGP) and genetic
algorithm-based DPMOGP (GA-DPMOGP).

Algorithm 1 DPMOGP
PS: population; PM: probability mapping; CP: cumulative probability
1: /* pre-learning for search the relatively optimal PM */
2: initialize PM = [], CP = []
3: PM = preLearning() {discuss in detail later}
4: CP = rouletteAlgorithm(PM)
5: /* start conventional GP */
6: /* Once the new node of tree is generated */
7: num = random.double() { random number between 0-1}
8: count = 0
9: for count = 0 to num.size() do

10: if num <CP[i] then
11: break
12: end if
13: end for
14: newNode = PM[count]

3.1 Random Search-based DPMOGP

In Random Search-based Different Probability Mapping for Operators used in
Genetic Programming (RS-DPMOGP), the primary objective is to generate a set
of probability mappings using a random number generator, which is explained
in detail later. Each probability mapping is used to create a fixed number of
solutions (trees) of a specified size, and the average fitness of all solutions is
calculated as the final fitness. Finally, several relatively good mappings are se-
lected among all the generated probability mappings, and it is saved as the
selection basis when a new operator node is generated in the conventional GP.
The algorithm for RS-DPMOGP is shown in Algorithm 2.
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Algorithm 2 RS-DPMOGP
PM: probability mapping; AN: amount of random mapping; AT: amount of
trees for each random mapping; AP: amount of PM
1: /* random searching for relatively optimal PM */
2: randomMappings =[]
3: for int i = 0 to AN do
4: randomMappings.add(randomNumGenerator())
5: end for
6: sortingByFitness(randomMappings){each random mapping need to generate

AT tress then take the average fitness}
7: PM = randomMappings[0:AP]{pick top AP relatively better probability

mapping as PM}
8: /* The rest follow Algorithm 1*/

3.2 Genetic Algorithm-based DPMOGP

Given that the solution space of the optimization problem presented above in-
volves permutations and combinations of N arbitrary numbers ranging from 0 to
1, it is evident that it belongs to the class of NP problems. To solve this type of
problem, metaheuristic algorithms are commonly employed [6], with the genetic
algorithm (GA) being a popular choice due to its simplicity and efficiency.

Algorithm 3 GA-DPMOGP
PM: probability mapping;
AP: amount of PM
1: /*genetic algorithm for relatively optimal PM */
2: randomMappings =[]
3: for int i = 0 to AP do
4: PM.add(genetic algorithm())
5: end for
6: /* The rest follow Algorithm 1*/

In genetic algorithm-based Different Probability Mapping for Operators is
used in Genetic Programming(GA-DPMOGP) Similar to the RS-DPMOGP ap-
proach, the genetic algorithm utilizes the probability mapping generated to pro-
duce one or more trees. The trees are then utilized to assess the fitting perfor-
mance of the generated formula using the least square method. The iteration
process is stopped after a specified generation, and the best individuals are se-
lected. Additionally, chaotic mapping is used as a random number generator
when generating the initial population and mutations.
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4 Experiments and Discussion

4.1 Dataset

Real-world data is utilized as a sample problem in this study. Specifically, the
Yacht Hydrodynamics Data Set, which is a relevant dataset in fluid mechanics for
exploring various ship hulls, is used for conducting experiments. The dataset is
well-suited for applying symbolic regression to discover physical formulas. Refer
to TABLE. 1 for further details.

Table 1. Yacht Hydrodynamics Data Set

Date Donated Instances: features: Area:
2013-01-03 308 6 Physical

4.2 Chaotic Mapping

In the experiments, one-dimensional chaotic maps are employed as the random
number generator. If not explicitly stated, the logistic mapping is assumed to be
the default choice for the random number generator.

A logistic mapping [7] is a classical and straightforward chaos model whose
modeling expression is presented in (1). The distribution of the model is largely
determined by the variable K. As shown in Fig.1, when K equals four, the system
is in a state of complete chaos, and the final long-term behavior is uniformly
distributed in the interval [0,1]. In this study, all chaotic maps utilized are based
on the scenario when the system is in a state of complete chaos.

Xn+1 = Xn ·K(1−Xn), K ∈ [0, 4], X ∈ [0, 1]. (1)

Fig. 1. Bifurcation diagram of the logistic mapping. When K is equal to 4, we consider
the system to be in a chaotic state.
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4.3 Results and Discussion

We conducted sets of comparative experiments to investigate the performance
of DPMOGP in various aspects and the impact of using chaotic mapping for
each experiment. Specifically, we performed 50 runs for each experimental group
and then computed the R-squared as the result. Given that the division may be
zero during calculations, we used protected division to replace the division with

y√
1+x2

.
Initially, we compared the performance of DPMOGP and conventional GP

with identical parameter settings. The parameter settings used for GP are pre-
sented in TABLE. 2.

Table 2. parameter for GP

Parameter Description
Population size 100

iterations 100
initialize tree size 3

mutation rate 0.1
Operator set +,-,*, / protected, tan,sin,cos, reciprocal, remainder
Terminal set x_0,x_1,x_2,x_3,x_4,x_5

Selection Tournament selection of size 4

(1) initially, we compared the performance of conventional GP and RS-
DPMOGP, this group of experiments also evaluated the algorithm’s performance
in scenarios involving different numbers of chaotic mapping iterations (i.e., the
total number of random searches). The parameter settings for this experiment
are presented in TABLE. 3.

Table 3. parameter for RS-DPMOGP

Parameter RS-DPMOGP A RS-DPMOGP B
number of chaos mapping 10000 15000

trees generated per mapping 1 1
number of saved mapping 5 5

depth of tree 7 7

From the results depicted in Fig.2, we observe that RS-DPMOGP B exhibits
the best performance, while conventional GP yields relatively poor results. These
results suggest that, at least for the dataset used in the experiment, DPMOGP
can enhance the algorithm’s performance. By comparing RS-DPMOGP A and
RS-DPMOGP B, we note that, in general, increasing the amount of computa-
tion in DPMOGP pre-learning leads to better performance before reaching the
threshold. Prior to reaching the global optimum, enhancing the optimization
algorithm’s amount of calculation in pre-learning can enhance the final GP’s
performance.
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Fig. 2. The R2 of results for conventional GP and DPMOGP. R2 ranges from 0 to 1,
and a value closer to 1 indicates a better fit of the model to the data. Typically, an R2

value greater than 0.7 is considered a good fit.

In this experiment, we adopt Wilcoxon signed-rank test to compare the per-
formance of different algorithms. The use of the Wilcoxon signed-rank test in
algorithm comparison has been well established in the literature [10]. Specifically,
we use this non-parametric test to assess whether there is a statistically signifi-
cant difference in the median performance of the two algorithms. By comparing
the p-value of the Wilcoxon signed-rank test with a predetermined significance
level (usually set at 0.05), we can determine whether the observed difference in
performance is statistically significant or not. In this experiment, a p-value less
than 0.05 indicates a statistically significant difference between the two algo-
rithms with a high probability. The detailed results are presented in TABLE.4.
Through the results of the statistical test, we have observed a significant dif-
ference between the conventional GP and the proposed method, which greatly
strengthens the persuasiveness of our research.

Table 4. Results of Wilcoxon signed-rank test for experiment (1). The results of the
conventional GP and those obtained with different parameters of the proposed algo-
rithm exhibit significant differences.

Comparison GP RS-DPMOGP A
GP - 0.023592951063958378

RS-DPMOGP B 0.01688572946162479 0.4961523833965189

(2) After confirming the effectiveness of DPMOGP, we conducted compar-
ative experiments to investigate the influence of different chaotic mappings on
the algorithm. One-dimensional chaotic mappings such as tent mapping and
sine mapping were added to the experiment, and the distribution of mappings
is shown in Fig.3.

Upon observing the experimental results, we found that when logistic map-
ping is used as a random number generator, the probability of retention results
falling within the range of 0-0.1 and 0.9-1 is higher than when random numbers
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are used directly. This phenomenon has a significant impact on the probability
that the corresponding operator is selected, as we use these 0-1 numbers as the
weight of each operator and then use the roulette algorithm to select. In other
words, the larger the weight of the operator, the easier it is to be selected. If
the weight is a tiny value, the probability of its corresponding operator being
selected will obey exponential decay.

Therefore, we hypothesize that the special distribution of logistic mapping
may lead to better results. To test this hypothesis, we constructed a set of
pseudo-random models with similar distributions to logistic mapping and con-
ducted experiments. The results are shown in Fig.4. We can observe that logistic
mapping and sine mapping follow the distribution as shown in Fig.3 with more
points located at the earlier and end stages, while the distribution of pseudo-
random looks similar to logistic mapping and sine mapping. For tent mapping,
the points are evenly distributed in the coordinate system.

(a) logistic mapping (b) Sine mapping (c) Tent mapping

Fig. 3. Distribution histogram for chaotic mappings. The horizontal axis represents
the generated results, and the vertical axis represents the frequency of occurrence of
the generated numbers within that range.

The results of the comparative experiments are presented in Fig.5. It is ob-
served that logistic mapping, sine mapping, and the pseudo-random model out-
performed random and tent mapping. As mentioned earlier, logistic mapping,
sine mapping, and the pseudo-random model have the characteristic of gener-
ating more tiny and huge numbers, whereas the distribution of tent mapping
closely resembles a random distribution. This suggests that our hypothesis that
the distribution of the random number generator influences the performance of
the algorithm is validated.

Additionally, analyzing the data from Fig.5, it is observed that the pseudo-
random model generates more outlier data than other models. We hypothesize
that this could be due to the ergodicity of chaotic mappings, which we plan to
investigate in our future study.

(3) In the final stage of our research, we examined the differences between
conventional GP, RS-DPMOGP, and GA-DPMOGP when the amount of com-
putation is limited. To ensure that we control the amount of computation for
each algorithm, we redesigned the parameters as shown in TABLE.5. The total
computation was set to 10,000 fitness evaluations, with 9,000 divided by for-
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(a) logistic mapping (b) tent mapping

(c) sine mapping (d) pseudo random

Fig. 4. Distribution Scatter Plot for each model. Through the distribution of the lattice,
we can see that (a), (b), and (d) are similar: more points are located near the vertical
axis of 0 and 1.

Fig. 5. The R2 result for comparing the different random number generator.

mal GP for both RS-DPMOGP and GA-DPMOGP and only 1,000 reserved for
pre-learning.

The experimental results are presented in Figure.6. When the computation
amount was limited to 10,000 times, our proposed method did not achieve sig-
nificant advantages over conventional GA. This was due to the pre-learning pro-
cess not being fully executed. However, we believe that when larger amounts of
data are used in the experiments and sufficient runs are given for pre-learning,
DPMOGP will achieve better results, even if the amount of computation is con-
trolled to be the same as conventional GP. We will discuss this in more detail in
future work.
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Table 5. parameter for experiment 3. Due to different algorithms, the parameters are
not the same, but they have the same computational cost.

Parameter GP RS-DPMOGP GA-DPMOGP
population size 100 100 100

iteration 100 90 90
number of chaos mapping(RS) - 1000 -
trees generated per map(RS) - 1 -

number of saved mapping(RS) - 20 -
depth of tree(RS) - 11 -

population size (GA) - - 10
depth of tree(GA) - - 11

mutation(GA) - - 0.1
iteration(GA) - - 10

number of saved mapping(GA) - - 20
total computation 10000 10000 10000

Fig. 6. The R2 result for comparing with limited computation.

From the figure, we can see that the results of the three methods are similar,
but the results of GA-DPMOGP are the most constricted because all the re-
sults will be optimized in one direction due to the characteristics of the genetic
algorithm. However, it is unclear whether fitness can fully account for the per-
formance of the generated probability mapping, so we cannot determine whether
the converging direction of the algorithm’s result is correct or incorrect.

We found in our experiments that, although GA-DPMOGP has a faster con-
vergence speed for pre-learning than RS-DPMOGP, the final results are generally
better for RS-DPMOGP, especially when there is a large amount of computa-
tion. This is because GA-DPMOGP is more likely to fall into a local optimum,
whereas RS-DPMOGP will not have such a problem.

Therefore, we can conclude that DPMOGP is not suitable for scenarios where
computing resources are scarce. When using DPMOGP, GA-DPMOGP should
be selected if the amount of computation given to pre-learning is insufficient. If
a large amount of computation is allocated to pre-learning, it is recommended
to choose RS-DPMOGP.
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5 Conclusion and Future Works

In this study, we propose DPMOGP to discuss the impact of the probability of
being selected for each operator on genetic programming. We implemented two
types of implementations using random search and genetic algorithms.

Through multiple experiments, we demonstrate that different probability
mappings of operators significantly affect the performance of GP. Thus, opti-
mizing the algorithm by finding an excellent probability mapping is effective.

However, we identified several limitations of the current method. Firstly, the
pre-learning method consumes a significant amount of computation, which may
not be a viable approach to finding the probability mapping. Therefore, we pro-
pose to integrate the pre-learning of DPMOGP into the GP process to increase
its efficiency in the future study. Secondly, RS-DPMOGP and GA-DPMOGP
have an important hyperparameter, i.e., the depth of the generated tree, which
we currently set based on experience rather than mathematical analysis. If this
parameter is too small, it may not fully explore the mapping, while setting it too
large will generate numerous invalid nodes. Moreover, the suitable depth varies
across different problems. We plan to address this issue in future studies.
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