
Enhanced Multipath QUIC Protocol with Lower
Path Delay and Packet Loss Rate

Chih-Lin Hu1, Fang-Yi Lin1, Wu-Min Sung1, Nien-Tzu Hsieh1, Yung-Hui
Chen2, and Lin Hui3

1 Department of Communication Engineering, National Central University, Taoyuan
City 320317, Taiwan

2 Department of Computer Information and Network Engineering, Lunghwa
University of Science and Technology, Taoyuan City 333326, Taiwan

3 Department of Computer Science and Information Engineering, Tamkang
University, New Taipei City 25137, Taiwan

clhu@ce.ncu.edu.tw; fangyi.lin, wumin.sung, neintzu.hsieh@g.ncu.edu.tw;
cyh@mail.lhu.edu.tw; 121678@mail.tku.edu.tw

Abstract. Ubiquitous content distribution brings enormous data flows
on the internet, which overwhelms network services and applications. To
mitigate this circumstance, the Quick UDP Internet Connect (QUIC)
protocol can provide applications with flow-controlled streams for struc-
tured communication, low-latency connection establishment, and net-
work path migration. Consider the high dynamics of traffic loading and
resource provision on network hosts that forward data flows along a par-
ticular path between two endpoints. For faster media transfer, QUIC per-
forms better than TCP for its effects in shortening the time of connection
establishment and data transmission between two endpoints. Notwith-
standing, the performance of QUIC is still susceptible to the bandwidth
capacity of a single path and its variance. Recent studies attempted to
exploit the notion of multipath QUIC that forwards the data over multi
paths to not only augment the total bandwidth capacity but also avoid
traffic congestion on some paths. Although prior studies showed the mul-
tipath effect, their QUIC schemes send out the data merely depending
on the round-robin or the shortest-time-first scheduling between multiple
paths. However, these ordinary designs cause the link congestion or high
transmission cost within multiple paths. In this paper, our study pro-
poses a novel multipath QUIC scheme which is able to minimize the flow
completion time of multipath QUIC by jointly utilizing two measures of
path delay and packet loss rate on a path. Experimental results show
that the proposed algorithm is superior to other scheduling schemes, in-
cluding QUIC, Lowest-RTT-First (LRF) QUIC, and Pluginized QUIC
(PQUIC).

Keywords: Quick UDP Internet Connect (QUIC), Multipath Trans-
port, HTTP, Content Distribution, Internet Protocol, Internet Services

1 Introduction

The HTTP protocol family [1] is the basis for global internet data commu-
nications, enabling the rapid development of Web browsers and internet ser-
vices. HTTP/1.1 and HTTP/2 are two major web protocols. With the prolifer-
ation of user demands and mobile services, particularly mobile media streaming
and AR/VR flows to an increasing user population, the functions provided by
HTTP/1.1 and 2 are no longer sufficient. In 2013, the IETF organization pro-
posed the RFC 9000, i.e., Quick UDP Internet Connect (QUIC) – a UDP-based
multiplexed and secure transport protocol. QUIC is often known as the trans-
port layer for HTTP/3. It is recommended to develop HTTP/3 with QUIC and
UDP in place of conventional HTTP/1.1 and 2 with TCP or UDP for internet
services and applications in wireless and mobile environments.

QUIC provides applications with flow-controlled streams for encrypted, mul-
tiplexed and reliable communication, low-latency connection establishment, and
network path migration. It can sustain high dynamics of traffic loading and re-
source provision on network hosts, rather than HTTP/2 based on TCP, TLS 1.2,
and other HTTP derivatives. Compared with TCP, QUIC need not the 3-way
handshake mechanism, so it can greatly reduce the time of network connection
establishment and transmission latency. With multiplexing and path migration,
it can strengthen the control of congested networks, making it more suitable for
emerging mobile services in Wi-Fi and 4G/5G environments.

Prior studies argued that the performance of QUIC can be affected in the
case of delivering large-size data between two endpoints [3]. This is because the
packet pacing policy is basically used to vary the transmission speed of each
stream when numerous packets enter that stream. The overall completion time
of a data flow in a stream will vary as well. Thus, data throughput of each flow
through a link may not reach to the full bandwidth capacity. Moreover, internet
operators may operate any self-protection controls by limiting the transmission
rate of UDP flows, which avoids unpredictable threats to the system.

As Section 2 will review, recent studies used Multipath QUIC (MPQUIC) to
deal with the above concerns subject to the restriction of a single path. Similar to
Multipath TCP (MPTCP) [2], MPQUIC sends data through different paths and
uses the aggregate bandwidth of different paths. It also likely modifies the path
scheduler policy for increasing the transmission speed and thence decreasing the
path delay that definitely corresponds to the end-to-end transmission delay of
a QUIC stream between two endpoints in a network. In this paper, our study
proposes a novel MPQUIC scheme which aims to reduce both path delay and
packet loss rate simultaneously. The proposed MPQUIC scheme is able to obtain
a shorter flow completion time for each stream in the network. We investigate
the proposed MPQUIC scheme in comparison with QUIC, LRF, and PQUIC
scheduling schemes. Experiments are driven using the Mininet emulator and the
Abilene topology. Performance results show that the stable and efficient effects
of our proposed scheme as demonstrated by the cumulative distribution function
(CDF) of flow completion time. In addition, our proposed scheme obtains lower
path delay and packet loss rate than the other schemes.

The rest of this paper is organized as follows. Section 2 describes related work.
Section ?? details the problem formulation and the path selection algorithm.
Section 4 describes the relative performance. Finally, the conclusion is given in
Section 5.

2 Related Work

Inspired by MPTCP, [4] examined the concept of MPQUIC which arranges QUIC
connections to go on different paths according to network characteristics. There
are two main reasons for the use of the multi-path function. The first is to
collect the network resource of different paths to transmit data. Automatically
selecting the best path becomes an interesting idea. The second is to maintain
user experience against network failure. Given a device with multiple ports, if one
of the network interfaces/ports/paths fails, immediately switching to another one
will not affect the user experience. Hence, using multi-path designs can ensure
the reliability and stability of network transport services by distributing and
scheduling streams to reduce the overall completion time in a network.

Recent studies proposed several MPQUIC scheduling methods. In [5], an
environment-aware MPQUIC packet scheduling method was proposed to per-
form collaborative scheduling for optimize the overall system transmission time
through the Round-Robin (RR) manner in sequential cycles. [6] emphasized on
the fair allocation of aggregate bandwidth based on stream priority, thereby
avoiding the delay of any individual stream due to heterogeneous paths. [7]
showed a PStream scheduling design used to select paths to different streams
according to the match of stream and path characteristics, unlike a greedy man-
ner that all streams compete for the fast path. [8] developed a Priority Bucket
method, which divides streams into different buckets according to stream pri-
ority. The priority and size factors can be extracted from HTTP/2 expression.
When streams with the same priority exist in the same bucket, they are served
in first-come-first-served order. In [9], the Peekaboo method based on reinforce-
ment learning was proposed. It decided on a scheduling sequence by referring to
the properties of temporal certainty and randomness of current path character-
istics. [10] proposed a Nine Tails scheduler that can selectively use redundant
paths to reduce latency as sending data in the tail part. By switching between
redundant and non-redundant scheduling policies, it can have higher overall
throughput and loss recovery. [11] developed a Pluginized QUIC (PQUIC) ar-
chitecture which can modularize QUIC functions and load in a portion or full of
QUIC modules. Through dynamic module deployment, the QUIC protocol was
launched to improve the transmission performance.

The above literature review shows that previous studies on MPQUIC mainly
used the QUIC-default Round-Trip Time (RTT) to determine the path selection.
Our study considers two network-oriented factors, i.e., delay and packet loss
rate of a path. Accordingly, we formulate a weighting normalization method to
calculate the weights of paths, which can be used to facilitate path selection and
thus minimize the flow completion time over MPQUIC streams.

3 Design of Path Selection Scheme

Give a network topology G(V,L). For every link li,j ∈ L from vi to vj , the
available bandwidth, the delay of the link, and the packet loss rate w.r.t li,j
are denoted as bi,j , ti,j and oi,j , respectively. Then, bmax

i,j denotes the maximum
amount of bandwidth that li,j can use.

Let F contain a set of all streams in G(V,L), P∗f represent a multipath set

in use for a stream f ∈ F , P ∗f [m] be the set of links in the mth path, and

likewise P∗f [m][n] be the nth link of the mth path. Thus, for the stream and path

selection, we take xfli,j to be a binary indicator, defined as follows:

xfi,j =

{
1, if a stream f passes through a link li,j ,
0, other conditions.

(1)

We further define several expressions regarding the relationship between links
and paths, as follows:

bPf = min
(
bi,j × xfi,j

)
, ∀l ∈ li,j , xfi,j 6= 0, f ∈ F (2)

bmax
i,j ≥

∑
f∈F

bi,j × xfi,j , ∀l ∈ li,j (3)

tPf =
∑

li,j∈L

ti,j × xfi,j , ∀ f ∈ F, l ∈ li,j (4)

oPf = 1−
∏

li,j∈L

(
1− oi,j × xfi,j

)
, ∀l ∈ li,j , xfi,j 6= 0, f ∈ F (5)

y(P∗f) =

{
1,

⋃
P ∗f 6= ∅,

0,
⋃
P ∗f = ∅. (6)

Formula (2) indicates the available bandwidth of a stream f in the set of
paths P , and then takes the minimum value. (3) indicates that the bandwidth
passed by a link cannot be greater than the maximum bandwidth available of
the link. (4) means the sum of transmission delays on a link w.r.t. a stream f .
(5) is to multiply the successful rate of each link to get the overall successful
rate on a path, so as to obtain the packet loss rate of this path.

To transform a single-path stream into a multipath stream by (6), y(P∗f)
indicates whether any link and path in the set of paths P∗f can be reused or not.
Here, we further discuss two cases, as follows.

Case 1 When the links and paths in P∗f are not reused.

Since links are not reused, the sum of the available bandwidth of each path can
be calculated by (7). Then, for y(P∗f) = 0 and ∀vj ∈ V , we can formulate (8) to
check the link condition of vi and vj : (i) the total number of positive multipaths,
(ii) the total number of negative multipaths, and (iii) a balanced state if both
vi and vj are intermediate relays.

b∗f =
∑

P∈P∗
f

bPf , ∀f ∈ F, y(P∗f) = 0 (7)

∑
li,j∈L

xfi,j −
∑

lj,i∈L

xfj,i =

{ |P∗f |, if vi is a start point of f ,
−|P∗f |, if vi is a target point of f,

0, if vi is a relay point of f.
(8)

�

Case 2 When the links and paths in P∗f can be reused

Let z
P∗

f

li,j
indicate whether li,j is reused in P∗f :

z
P∗

f

li,j
=

{
1, li,j ⊆

⋃
P∗f ,

0, li,j *
⋃
P∗f .

(9)

n(li,j , P
∗
f) indicates the number of times that li,j is reused by some paths in P∗f :

n(li,j , P
∗
f) =


∑

m∈|P∗
f
|

∑
n∈|P∗

f
[m]|

li,j ∧ P ∗f [m][n]− 1, ∀f ∈ F, li,j ∈ L, zP
∗
i

li,j
= 1,

0, ∀f ∈ F, li,j ∈ L, zP
∗
i

li,j
= 0.

(10)
Then, the bandwidth of a link is divided into two parts: the link bandwidth

that has been reused b̄∗f , and the link that has not been reused b̂∗f , as follows.

b∗f = b̄∗f + b̂∗f , ∀f ∈ F, subject to (11a)

b̄∗f = min(bPf), ∀f ∈ F, P ∈ P∗f , y(P∗f) = 1, z
P∗

i

li,j
= 1. (11b)

b̂∗f =
∑

P∈P∗
f

bPf , ∀f ∈ F, y(P∗f) = 1, z
P∗

i

li,j
= 0, (11c)

Formula (11a) adds the two parts together, which yields the total amount of
bandwidth that a path set can provide.

Formula (12) clarifies the link relation in three conditions. (i) If vi is a start
point of a stream f , the total of paths that a steam can still use is given by
|P∗f | minus the number of times li,j that is currently used by some paths in P∗f ,
i.e., n(li,j , P

∗
f). (ii) If vi is a target point, the calculation is in opposition to (i).

(iii) Finally, if vi is a relay w.r.t. ∀ y(P∗f) = 1 and vj ∈ V , there are three sub-
cases (a)(b)(c). Explicitly, (a) multiple paths converge at this relay point, then
n(lj,i, P

∗
f)− n(li,j , P

∗
f) is negative. (b) multiple paths to divert from this point,

this outcome is positive. (c) in a balanced state, the outcome equals to 0.

∑
li,j∈L

xfli,j −
∑

lj,i∈L

xflj,i =

{ |P∗f | − n(li,j , P
∗
f), if vi is a start point of f ,

−|P∗f |+ n(lj,i, P
∗
f), if vi is a target point of f,

n(lj,i, P
∗
f)− n(li,j , P

∗
f), if vi is a relay point of f.

(12)

�

Note that under the multipath scenario, the delay time and packet loss rate
of a path are not affected by whether a path is reused subject to (2). Regardless
of the value of (6), the delay time and packet loss rate w.r.t. any P ∈ P∗f , denoted
as t∗f and o∗f , can be given below.

t∗f = max(tPf) , ∀f ∈ F, P ∈ P∗f , y(P∗f) = 0 (13)

o∗f =
∑

P∈Pn
f

oPf
|P∗f |

, ∀ f ∈ F, y(P∗f) = 0 (14)

According to (13), given a set of final selected multipaths, the delay time is
represented by the maximum delay time on the path for ∀P ∈ P∗f . The outcome
of (14) indicates the average of packet loss rate for those selected paths in P∗f .
After calculating the available bandwidth, delay time, and packet loss rate, now,
it is able to figure out the comparison between user requirements and actually
available provision, as explained below.:

bf ≤ b∗f , ∀f ∈ F (15)

tf ≥ t∗f , ∀f ∈ F (16)

of ≥ o∗f , ∀f ∈ F (17)

Particularly, (15) ensures that the multipath bandwidth is available for stream-
ing f , while (16) and (17) enforce that both transmission delay and packet loss
rate in the selected path need to be smaller than the tolerable bounds as re-
quested by f .

Hence, in accordance with the above formulae and constraints of the multi-
path provision, we develop an optimal multipath selection problem of minimizing
the flow completion time subject to user requirements, as expressed below:

arg min
∑
f∈F

t∗f ,

s.t.

xfi,j = 1, ∀li,j ∈ L,
z
P∗

f

li,j
∈ (0, 1), ∀P∗f , li,j ∈ L,

y(P∗f) ∈ (0, 1), ∀P∗f ∈ P,
Eqs. (15), (16), (17).

(18)

Our study refers to the research efforts in [12][13], and learns that such a
multipath selection problem for QoS-based data streaming is known as NP-
Complete [14]. Instead of finding a static optimization in theory, our study in
this paper attempts to develop an optimal-approximate solution to figure out
a set of appropriate multipaths using heuristic strategies with two design fac-
tors, i.e., path delay and packet loss rates. Particularly, we describe a weighting

normalization method in 19 with two tuning parameters α and β to change the
relative influence of path delay and packet loss rate over MPQUIC streams.

pw = α× tf
t∗f

+ β × of
o∗f
. (19)

In what follows, we specify the algorithmic procedures for finding the paths
for MPQUIC streams.

Algorithm 1 Path Set Formation with Joint Path Delay and Packet Loss Rate

When the stream enters the MPQUIC, the system initializes the set of avail-
able paths Pf for a data stream f , as well as prepares an empty two-dimensional
matrix A[][]. At first, when Pf is empty, the system refers to (2), (4) and (5)
to determine the values of data stream bandwidth, delay, and packet loss rate,
which are stored in A[][]. Then, the system checks a condition of whether the
set of available paths for f contains equal to or more than k paths. As this
condition is valid, the system proceeds to Algorithm 2 with a set of candidate
paths for f . Later soon, Algorithm 2 will figure out k shortest paths to form a
set of P∗f .

Algorithm 1 Path Set Selection with Joint Path Delay and Packet Loss Rate

input : G(V,L): network topology,
k: the number of paths in the multipath,
α: a coefficient of path delay,
β: a coefficicient of packet loss.

output: P∗f : the set of multipath.
1 while Flow f comes into the system do
2 Pf = {∅};

A[][] = null;
while Pf = {∅} do

3 Pf ← getDefaultPathSet(P, f) ;
foreach p ∈ Pf do

4 A[p][0]← getPathBW (P[p]) ; . (2)
A[p][1]← getPathDelay(P[p]) ; . (4)
A[p][2]← getPathPL(P[p]) ; . (5)

5 end foreach

6 end while
7 if (Pf = {∅} or |Pf | < k) then
8 Reject f ;
9 else

10 P∗f ← getkPath(Pf , α, β, f, k, A) ; . Go to Alg. 2
if P∗f = ∅ then

11 P∗f ← getShorestkPath ∈ Pf ;
12 end if

13 end if

14 end while

Algorithm 2 Finding k Shortest Paths over MPQUIC Streams

Algorithm 2 is the path selection procedure for finding the k-shortest paths
based on QoS requirements. This procedure refers to Yen’s k-shortest path algo-
rithm [15] with QoS-specific conditions. To find the k-shortest paths, the proce-
dure runs several routes sequentially: (a) define variables pw, b∗f and P∗f [][], (b)
calculate the weight value pw of a stream by (19), (c) sort the weights of streams
in descending order, and (d) update the available bandwidth of each link accord-
ing to (7) and (11a). Then, the procedural routine goes into a while-loop with a
condition as b∗f is smaller than the bandwidth bf asked by a stream f . If the min-
imum bandwidth of P∗f exceeds the currently available path Pf , P∗f is still to be
null. Then, the routine updates the set of available paths P∗f and the bandwidth
b∗f , remove the path of the smaller bandwidth from P∗f , add a path with the
larger bandwidth, update b∗f , and then push the value of P∗f back to Algorithm
1 to allocate available paths. Eventually, the data flow is passed through those
suitable and multiple paths in the current network. To better explore the effects
of Algorithms 1 and 2, we will present experiments and performance results in
Section 4.

Algorithm 2 Finding k Shortest Paths over MPQUIC Streams

Function getkPath(Pf , α, β, f, k, A) is
pw[] = null;
b∗f = 0;
P∗f [][] = null;
foreach p ∈ Pf do

pw[p]← getPathWeight(P[p], α, β,A) . (19)
end foreach
pw ← sortByDescendingOrder(pw) ;
P∗f ← selectPathTopk(pw, k) ;
b∗f ← getMultiPathBW (P∗f) . (7) and (11a)
while b∗f ≤ bf do

if minBWPath(P∗f) ≥ maxBWPath(Pf − P∗f) then
P∗f = ∅
break;

end if
P∗f ← P∗f −minBWPath(P∗f)
P∗f ← P∗f +maxBWPath(Pf − P∗f)
b∗f ← getMultiPathBW (P∗f) . (7) and (11a)

end while
return P∗f

end

4 Performance Results

This section shows the performance of our proposed method in comparison with
QUIC, multipath QUIC LRF [16] and the PQUIC schemes [11].

4.1 Experimental Setting

We conducted experiments on the Mininet simulation platform that runs on a
computer equipped with an Intel Core i7 processor, 16GB memory, and Ubuntu
18.04.6 LTS. All the algorithmic programs are coded in C language. We used
the Wireshark packet analyzer to trace the data flows during the experiments.

Experiments were divided into three sorts with different sizes per data flow:
100, 200, and 400 MB, and produced three measure results of the overall flow
completion time, path delay, and packet loss rate. We employed the Mininet to
adjust simulation parameters. Explicitly, we set k = 3, delay coefficient α = 0.5
and packet loss coefficient β = 0.5 as calculating the weighted value pw. We
adopted the Abilene topology [17]: there are 11 nodes and 14 links, the size of
each packet is between 960 and 1200 bytes, the path bandwidth is set to 100
Mbps, the delay is from 0 to 100 ms by the binomial distribution, and packet
loss rate is set to 0.001%. All experimental cases were run in 20 times to have
the results on average.

4.2 Flow Completion Time

Figures 1, 2 and 3 exhibit the flow completion time in terms of the cumulative
distribution function (CDF). As observed, the performance by naive QUIC is
the worst, because QUIC only transmits data through a single path, as com-
pared with the other schemes that take multiple paths. It is visible that our
scheme outperforms LRF and PQUIC. Explicitly, LRF is based on finding the
path with the minimum RTT for transmitting the top-priority data first. Thus,
LRF behaves like a greedy way and only focuses on the RTT condition without
referring to other network characteristics.

PQUIC switches between multipaths to ensure that data packets are sent to
the receiver fairly. However, PQUIC suffers from minor performance degrada-
tion as path characteristics often change, and as the data size becomes larger.
Relatively, our proposed scheme considers both path delay and packet loss rate
of path candidates. By using a weighting normalization method, it is able to
calculate Pw. The higher Pw, the higher priority the data needs to be scheduled
for transmission first. Our proposed scheme with weighting effects can minimize
the flow completion time, resulting in a remarkable comparison with LRF and
PQUIC.

4.3 Packet Loss Rate

Figures 4, 5 and 6 present the packet loss rate of the overall system performance.
As observed, the packet loss rate of QUIC is higher than the other multipath
schemes, for the major reason that only the resource allocation of a single path
is used. In the case of data size 100 MB per stream, the packet loss rates of
QUIC, LRF, and PQUIC are similar, but become different when the data size
per stream increases to 200 MB and even 400 MB. LRF searches for the path of
the minimum RTT, which may cause the problem of packet loss in the rear tail

Fig. 1: Data size 100 MB Fig. 2: Data size 200 MB Fig. 3: Data size 400 MB

of data stream. PQUIC is fairer as allocating multiple paths to a data stream.
Its packet loss rate is lower than the LRF’s result. By contrast, our scheme can
distribute the data to multiple paths efficiently, thereby being less susceptible
to the increase of data size per stream. As seen, our scheme is able to cope with
the packet loss rate to be lower than 1 % regardless the increasing data size from
100 MB to 400 MB.

Fig. 4: Data size 100 MB Fig. 5: Data size 200 MB Fig. 6: Data size 400 MB

4.4 Overall system stability

Figures 7, 8 and 9 depict the quartile distribution of flow completion time when
the experiment launched 20 data flows one by one repeatedly. Obviously, QUIC
needs to take much more time to accomplish the transmission of per data flow.
The time gap between QUIC and three multipath QUIC scheme is apparent.
Instead, Figures 10, 11 and 12 exhibit a clear view on the time gap of three
multipath QUIC schemes. LRF has not only a larger completion time but also
a wider quartile distribution than PQUIC and our scheme. We examined that
as compared with our scheme, PQUIC cannot perfectly allocate data packets to
paths. As the amount of data packets increases rapidly, the probability of head-
of-line blocking will increase and then affect the data throughput. Our scheme
still keeps a minor quartile distribution with the lowest flow completion time,
which shows the stable transport performance.

 10

 15

 20

 25

 30

 35

 40

 45

QUIC LRF PQUIC Proposed

Fl
ow

 C
om

p
le

ti
on

 T
im

e
(s

)

Fig. 7: Data size 100 MB

 15

 20

 25

 30

 35

 40

 45

 50

 55

QUIC LRF PQUIC Proposed

Fl
ow

 C
om

p
le

ti
on

 T
im

e
(s

)

Fig. 8: Data size 200 MB

 35

 40

 45

 50

 55

 60

 65

 70

QUIC LRF PQUIC Proposed

Fl
ow

 C
om

p
le

ti
on

 T
im

e
(s

)

Fig. 9: Data size 400 MB

 10

 11

 12

 13

 14

 15

 16

LRF PQUIC Proposed

Fl
ow

 C
om

p
le

ti
on

 T
im

e
(s

)

Fig. 10: Data size 100 MB

 15

 20

 25

LRF PQUIC Proposed

Fl
ow

 C
om

p
le

ti
on

 T
im

e
(s

)

Fig. 11: Data size 200 MB

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

LRF PQUIC Proposed

Fl
ow

 C
om

p
le

ti
on

 T
im

e
(s

)

Fig. 12: Data size 400
MB

5 Conclusion

This paper designs a novel data transport scheme based on MPQUIC. Compared
with the traditional network protocol TCP, MPQUIC is based on UDP and
keeps the advantages of QUIC from a single-path to multi-path data transport.
Our proposed MPQUIC scheme is able to joint sustain transmission delay and
packet loss rate with respect to data flows. Performance study is conducted
by comparing the proposed scheme with three prior schemes, i.e., QUIC, LRF,
and PQUIC. It is remarkable that our proposed scheme performs efficiently and
stably in terms of the flow completion time in the system. Our future research
will try to implement MPQUIC and measure the transport performance in more
complicated network scenarios with emerging AR/VR applications, particularly
in mobile environments.

Acknowledgment

This work was supported in part by the National Science and Technology Coun-
cil, Taiwan (R.O.C.), under Contracts MOST-109-2221-E-008-051, NSTC-111-
2221-E-008-064 and NSTC-111-2410-H-262-001.

References

1. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee, “Hypertext transfer protocol–http/1.1,” 1999.

2. C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure,
and M. Handley, “How hard can it be? designing and implementing a deployable
multipath TCP,” In Proc. of 9th USENIX Symposium on Networked Systems
Design and Implementation, Apr. 2012, pp. 399–412.

3. P. Megyesi, Z. Krämer, and S. Molnár, “How quick is quic?” In Proc. of 2016 IEEE
International Conference on Communications (ICC’16), 2016, pp. 1–6.

4. Q. De Coninck and O. Bonaventure, “Multipath quic: design and evaluation,” In
Proc. of the 13th international conference on emerging networking experiments
and technologies, 2017, pp. 160–166.

5. Y. G. Jing Wang and C. Xu, “A stream-aware multipath quic scheduler for hetero-
geneous paths,” In Proc. of 2019 ACM 3rd Asia-Pacific Workshop on Networking,
2019, pp. 43–49.

6. A. Rabitsch, P. Hurtig, and A. Brunstrom, “A stream-aware multipath quic sched-
uler for heterogeneous paths,” In Proc. of of the Workshop on the Evolution,
Performance, and Interoperability of QUIC, 2018, pp. 29–35.

7. X. Shi, L. Wang, F. Zhang, B. Zhou, and Z. Liu, “Pstream: Priority-based stream
scheduling for heterogeneous paths in multipath-quic,” In Proc. of 29th Interna-
tional Conference on Computer Communications and Networks, 2020, pp. 1–8.

8. X. Shi, F. Zhang, and Z. Liu, “Prioritybucket: A multipath-quic scheduler on ac-
celerating first rendering time in page loading,” In Proc. of the 11th ACM Inter-
national Conference on Future Energy Systems, 2020, pp. 572–577.

9. H. Wu, Ã. Alay, A. Brunstrom, S. Ferlin, and G. Caso, “Peekaboo: Learning-based
multipath scheduling for dynamic heterogeneous environments,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 10, pp. 2295–2310, 2020.

10. V. A. Vu and B. Walker, “On the latency of multipath-quic in real-time applica-
tions,” In Proc. of 0 16th International Conference on Wireless and Mobile Com-
puting, Networking and Communications (WiMob), 2020, pp. 1–7.

11. Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson, A. Legay,
O. Pereira, and O. Bonaventure, “Pluginizing quic,” In Proc. of the ACM Special
Interest Group on Data Communication, 2019, pp. 59–74.

12. Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia
applications,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 7,
pp. 1228–1234, Sept. 1996.

13. C.-L. Hu, C.-Y. Hsu, and W.-M. Sung, “Fitpath: Qos-based path selection with
fittingness measure in integrated edge computing and software-defined networks,”
IEEE Access, vol. 10, pp. 45 576–45 593, 2022.

14. R. M. Karp, “Reducibility among combinatorial problems,” R. E. Miller and
J. W. Thatcher (eds.) Complexity of Computer Computations. Boston, MA, USA:
Plenum Press, 1972, ISBN 0-306-30707-3, pp. 85–103.

15. J. Y. Yen, “Finding the k shortest loopless paths in a network,” Management
Science, vol. 17, no. 11, pp. 712–716, 1971.

16. T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz, “Mul-
tipath quic: A deployable multipath transport protocol,” In Proc. of 2018 IEEE
International Conference on Communications (ICC), 2018, pp. 1–7.

17. S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The internet
topology zoo,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 9,
pp. 1765–1775, 2011.

	Enhanced Multipath QUIC Protocol with Lower Path Delay and Packet Loss Rate

