
Case Study in Developing Extensible Virtual Assistant

Using Genie Framework

Yi-Ting Wu1, Albert Chang2, Yu Hung Tsai1, Po-Chuan Wang1, Tinghao Chen1 and

Jeng-Wei Lin1[0000-0001-8599-5083]

1 Tunghai University, Taichung 407224, Taiwan

{g10490001, s08490007, s08490037, g11490031, jwlin}@thu.edu.tw
2 BSI Pacific, Taiwan Branch, Taipei, 11492, Taiwan

albert.chang@bsigroup.com

Abstract. Deep learning has made significant improvement in natural language

processing. Nowadays virtual assistants or chatbots attract attention of many re-

searchers and are expected to be applied in more and more arears. We had de-

signed and implemented an extensible financial virtual assistant using Genie

framework. A new device (or skill) is developed to offer financial services in

backend server cloud. The device and supported APIs (Application Program-

ming Interface) are registered in an open repository Thingpedia. When Genie

receives user utterances, it translates them into ThingTalk programs using a

large deep-learning neural networks. Then, Genie executes the ThingTalk pro-

grams, which may invoke the financial services through the registered APIs.

ThingTalk is a declarative programming language. Domain experts can easily

describe financial services in high-level viewpoint with minimal knowledge and

experiences of computer programming and system development, while complex

services are implemented in backend servers and access through API. As a re-

sult, domain experts and computer engineers together can fast and easily build a

virtual assistant that support natural language interface.

Keywords: Extensibility, Virtual Assistant, Chatbot, NLP, Large Language

Model, Genie, ThingTalk.

1 Introduction

Financial technology, abbreviated as FinTech, is emerging in recent years. Combined

together with multiple information and communication technologies (ICT), such as

mobile communications, social media, cloud services, and big data analysis, FinTech

is expected to significantly change how financial services are provided and consumed.

For example, in a user behavior survey of a very popular social app in Taiwan, more

than half of its users had accessed official accounts operated by financial services [1,

2]. Chatbots, or virtual assistants, for different financial services become popular in

our daily life. However, most of them can understand only common and simple ques-

tions and provide answers according to some predefined rules. Using traditional ICT

mailto:jwlin%7d@thu.edu.tw

2

technologies, it is not easy to create a virtual assistants that can interact with its users

in natural languages [3].

Nowadays, various applications have been emerging due to the development of ar-

tificial intelligence (AI). Deep learning [4] promotes natural language and speech

signal processing significantly. Chatbots and virtual assistants have gained a lot of

attention and are applied in many scenarios, such as education, health care, entertain-

ment, and so on [5]. In new scenarios, the dialogue systems of these virtual assistants

are improved to make their replies more like human replies [6], and furthermore the

way users interact with them is more similar to the way with humans [7].

Virtual assistants, such as Amazon Alexa [8, 9], Google OpenWeave [10], Apple

Homekit [11], Samsung SmartThings [12], were designed and developed for these big

giant companies. On the other hand, Genie (previously Almond) is an open-source

virtual assistant that takes several important issues into consideration, such as privacy,

extensibility, and programmability [13-16].

In this paper, we presents an extensible virtual assistant for financial services using

Genie framework. Fig. 1 shows the scenario of the proposed virtual assistant. It acts

as a chatbot that can provide historical and real-time information of Taiwan Stock

market in some chatrooms in a social media. We must note that in practice, there will

be user questions that the chatbot cannot understand. It has to handover these ques-

tions to the customer support team and technical support team. The latter has to ex-

tend the capacity of chatbot while the services cannot stop.

API
Knowledge

Base

Data

Source

 1

Data

Source

 2

Data

Source

 n
…

A

A

A

A

B

C

A

D

C

A

E

Customer

Support Team
Chatbot

IT DevOps

Chatroom 1 Chatroom 2 Chatroom 3

Technical

Support Team

Fig. 1. Scenario of the proposed virtual assistant

We have created the chatbot based on Genie framework [3, 13-16]. A new device

(or skill) for Taiwan Stock market is developed to offer stock information in backend

server cloud. The device and supported APIs (Application Programming Interface)

are registered in an open repository Thingpedia. When Genie receives user utterances,

it translates them into ThingTalk programs using a large deep-learning neural net-

works. Then, Genie executes the ThingTalk programs, which may invoke the finan-

cial services through the registered APIs. Fig. 2 the system architecture of the pro-

posed virtual assistant.

3

User

Thingpedia

Server Cloud

Semantic

Parser

Genie

API

get_price()

get_plot()

...

...

API

func1()

func2()

...

...

Device 1

Utterances

Device/API

Lookups

Device/API

Registration

Device/API

Invocations

ThingSystem

Fig. 2. Proposed virtual assistant architecture based on Genie framework

ThingTalk is a high-level declarative programming language. With a basic level of

knowledge and experiences of computer programming and system development, do-

main experts can conceptually describe financial services in ThingTalk in a high-level

viewpoint. Function blocks that together support the financial services physically are

implemented by the technical team in backend server cloud. The APIs for these func-

tion blocks are registered in Thingpedia. When Genie executes ThingTalk programs,

it can look up the requested APIs in Thingpedia and then invoke the corresponding

function blocks to realize the financial services. As a result, domain experts and tech-

nical team can collaboratively develop and extend charbot fast and easily.

In the remaining of this paper, we will describe the proposed virtual assistant in

Session 2, present the preliminary experiment results in Session 3, and give the con-

clusions in Session 4.

2 Proposed Virtual Assistant

In this session, we first investigate the possible function set of the proposed virtual

assistant. As well, we will simply describe ThingTalk programming language. Then,

we present the design and implement of the device for Taiwan Stock.

2.1 Function Set of the Virtual Assistant

First, we collected news, reports, press releases, and articles from various platforms

for Taiwan Stock. Keywords were identified, such as price, stock names, stock codes,

weighted index, and so on. User utterances to query information of these keywords

were manually generated, such as the following query utterances.

 Check the trading volume/opening price/highest price/… of today’s market?

4

 Give me the company information of XYZ/ABC/…*?

 Query XYZ/ABC/… stock code?

 XYZ/ABC/… percentage change today

 XYZ/ABC/… daily/weekly/monthly line

 stock (highest, average, and/or lowest) price of XYZ/ABC/… today/yesterday/last

week?
*XYZ/ABC/… refer to an abbreviation, full name, or nickname of a stock.

We most note that this collection of user intentions and corresponding utterances is

typically incomplete. As we have stated above, there will be always a need to extend

the capacity of the proposed chatbot for Taiwan Stock market. Thus, in the beginning,

we developed a small set of functions for stock information queries.

2.2 ThingTalk

ThingTalk [13-16] is a high-level declarative language designed to access Internet

services and IoT devices. ThingTalk is domain-specific and data focused. It has a very

simple construct of three types of clauses: stream (s), query (q), and action (a). The

construct follows.

 s [⇒ q]? ⇒ a; (1)

In a ThingTalk program, s is a stream clause that determines when the rest of the

program runs. It can be a periodic timer, or it can monitor the result of a monitorable

query function defined in Thingpedia for changes. The optional query clause (q) spec-

ifies what data should be retrieved. Results of queries can be filtered. They can also

be used as an input parameter in a subsequent function invocation. The action clause

(a) specifies what the program should do.

For example, a user command “notify me when I receive a text” can be done by the

following ThingTalk program.

monitor (@org.thingpedia.builtin.thingengine.phone.sms())

 => notify (2)

To be short, we omit the grammar details of ThingTalk in this paper.

2.3 Device for Taiwan Stock Market

In this study, we registered a new device named as TaiwanStock in Thingpedia, as

well as the APIs for the function blocks required to support intended stock services.

As shown in Fig. 3, a query function get_price() is declared as an API of this

device. Again, we omit the detail of the syntax in this paper.

5

Service:TaiwanStock

class @com.TaiwanStock {

 query get_price(

 in opt company : String

 #_[canonical={

 default="base",

 base=["stocknumber", "number","stock code",

 "stock symbol","ticker symbol"],

 property=["# stock","# stock price"]

 }],

 out stockNo : String

 #_[canonical="stock symbol"],

 out stockName : String

 #_[canonical="stock name"],

 ...)

 ...}

Fig. 3. A snapshot of the TaiwanStock device

The three types of clauses in ThingTalk can usually be mapped to three type of

phrases in natural languages, and vise versa. For example, a stream clause can be

mapped to when phrase (WP), a query clause to noun phrase (NP), and an action

clause to verb phrase (VP), respectively.

These phrases are used as primitive templates in genie-toolkit [13-16]. Table 1

shows some mapping examples used in this study, where genie-toolkit considers ${}

as a holder of a parameter. Combined with constructive templates for the nature lan-

guage, English in this study, genie-toolkit can generate a large number of user utter-

ances and their corresponding ThingTalk programs. Thus, we can train the semantic

parser in Genie to translate user utterances to ThingTalk programs.

Table 1. Some phrases in nature language and ThingTalk clauses.

Phrases
Type of

phrases
ThingTalk clauses

price of ${p_code} NP
@taiwanstock.get_price

(company=p_code)

${p_company}’s K line NP
@taiwanstock.get_Kplot

(company=p_company)

When ${p_company} rose by

more than ${p_change}
WP

edge (monitor

(@taiwanstock.get_price

(company=p_company)))

on change >= p_change

Call ${p_number} VP

@org.thingpedia.builtin.

thingengine.phone.call

(number=p_number)

6

3 Preliminary Experiment

3.1 Data Source

In this study, we downloaded the historical data of 2022 Taiwan Stock market from

Taiwan Economic Journal (TEJ) [17]. The data was preprocessed and then stored in a

SQL database in the backend server cloud.

3.2 Backend Servers

There are two types of backend servers: database servers and application servers. All

servers are generic personal computers running Ubuntu 18.04.6 LTS. MariaDB [18] is

adopted in the database server. Functions declared in the TaiwanStock device are

implemented using Python and Flask [19] according to Restful API design in the ap-

plication servers.

3.3 Genie Server

Genie server accepts user utterances, translate them into ThingTalk programs by the

semantic parsers, and execute the program to fulfill user requests. Genie accesses the

TaiwanStock device via the APIs registered in Thingpedia and implemented in the

backend application servers.

Genie server is also a generic personal computers running Ubuntu 18.04.6 LTS. It

is equipped with AMD® Ryzen 5 2600 six-core processor × 12, 64GB DRAM, and

NVIDIA GeForce RTX 2070.

Currently, Genie server adopts BART-base [20] as its semantic parser.

3.4 Experiment

In this preliminary study, we carefully collected 80 user utterances, and designed their

corresponding ThingTalk programs. Some user utterances are simple sentences, while

others are dialogs of several sentences. Table 2 shows some of the user utterances and

their corresponding ThingTalk programs.

In order to train the semantic parser, BART-base. Phrases were identified as WP,

NP, and VP, and mapped to ThingTalk clauses. We used genie-toolkit to generate the

training data to train BART-base.

Finally, for the 80 user utterances, we randomly pick up some predicted ThingTalk

programs for manual evaluation.

3.5 Experiment Results

It took one hour or so for genie-toolkit to generate the training data and then train

semantic parser, currently BART-base.

7

Table 2. Some user utterances and their corresponding ThingTalk program.

User utterances ThingTalk program

What is the stock price of

2318?

$dialogue

@org.thingpedia.dialogue.transaction

.execute;

@com.TWstock.get_price(query="2318")

;

Check 2318 stock price on

April 15

$dialogue

@org.thingpedia.dialogue.transaction

.execute;

@com.TWstock.get_price(query="2318",

date = new Date("2022-04-15"))

1101 Trends

$dialogue

@org.thingpedia.dialogue.transaction

.execute;

@com.TWstock.get_plot(stockname

="1101");

Fig. 4 shows a snapshot when chatting with Genie, where the user requests a K line

graph of stock No. 2317.

Fig. 4. Snapshot of chatting with Genie

3.6 Evaluation

For the 80 user utterances, we randomly pick up some generated ThingTalk programs

for manual evaluation.

Table 3. Some results of the evaluation

No User utterances Target ThingTalk program Predicted ThingTalk program Evaluation

1 hello

$dialogue

@org.Thingpedia.dialogue.

transaction.greet;

$dialogue

@org.Thingpedia.dialogue.

transaction.greet;

ok

42
tsmc stock price on

DATE_0

$dialogue

@org.Thingpedia.dialogue.

transaction.execute;

@com.TaiwanStock.get_price(

date = new Date (2022,3,10,

new Time(8 , 0)),

query = " tsmc ") ;

$dialogue

@org.Thingpedia.dialogue.

transaction.execute;

[stockName]of

@com.TaiwanStock.get_price(

date = DATE_0);

ok_

function

61

I want to query the

stock price of 0050

stock code

$dialogue

@org.Thingpedia.dialogue.

transaction.execute;

@com.TaiwanStock.get_price(

query = " 50 stock code ");

$dialogue

@org.Thingpedia.dialogue.

transaction.execute;

@com.TaiwanStock.get_price(

query = " 50 ");

ok_

without_

param

68
query the stock

price of 1101

$dialogue

@org.Thingpedia.dialogue.

transaction.execute;

@com.TaiwanStock.get_price(

query=" 1101 ");

$dialogue

@org.Thingpedia.dialogue.

transaction.execute;

@com.TaiwanStock.get_price(

query = " 1101 ");

ok

We carefully compare the predicted and target ThingTalk programs [16]. The re-

sult of the each comparison could be ok, ok_without_param, ok_function, ok_device,

ok_num_function, ok_syntax, or wrong_syntax.

Table 3 show some results of the evaluation. The evaluation result shows 76 of 80

predicted ThingTalk programs are effective.

4 Conclusions and Future Works

In this study, we had designed and implemented an extensible chatbot for Taiwan

Stock market based on Genie framework. Genie server accepts user utterances, trans-

late them into ThingTalk programs by the semantic parsers, and execute the program

to fulfill user requests. Genie accesses the TaiwanStock device via the APIs registered

in Thingpedia and implemented in the backend application servers.

ThingTalk is a declarative programming language. Domain experts can conceptual-

ly describe various services in ThingTalk in a high-level viewpoint. They need just a

basic level of knowledge and experiences of computer programming and system de-

velopment. On the other hand, functions actually carrying out the complex computing

logics are declared as APIs, and implemented by the technical team in backend server

cloud. With ThingTalk programming language as a bridge, domain exports can focus

on the service logics in high level, while technical teams can focus on implementing

the APIs in the backend servers. As a result, it is much easier to extend the capacity of

the chatbot than earlier approaches

4.1 Future works

Currently, several new functions of the chatbot have been identified. New APIs are

under construction to extend the capacity of the chatbot. As well, new large language

models (LLM), such as ChatGPT [21], are under investigation for translation from

user utterances into ThingTalk programs.

References

1. King, B.: Bank 4.0: Banking everywhere, never at a bank. John Wiley & Sons (2018).

2. 2021 LINE User Usage Survey. Nielsen (2021). https://linecorp.com/zh-hant/pr/news/zh-

hant/2021/4000, last accessed 2023/5/20. (In Chinese)

3. Wu, Y.-T.: Design and implementation of extensible financial chatbot. Master Thesis.

Dept. Information Management, Tunghai University (2023).

4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), pp. 436-444 (2015).

5. Liao, S.-w., Hsu, C.-H., Lin, J.-W., Wu, Y.-T., Leu, F.-Y.: A deep learning-based Chinese

semantic parser for the Almond virtual assistant. Sensors 22(5), 1891 (2022).

6. Shah, H., Warwick, K., Vallverdú, J., Wu, D.: Can machines talk? Comparison of Eliza

with modern dialogue systems. Computers in Human Behavior, 58, pp. 278-295 (2016).

7. Adamopoulou, E., Moussiades, L.: An Overview of chatbot technology. In: Maglogiannis,

I., Iliadis, L., Pimenidis, E. (eds) Artificial Intelligence Applications and Innovations.

10

AIAI 2020. IFIP Advances in Information and Communication Technology, vol. 584.

Springer, Cham (2020).

8. Amazon Alexa Voice AI, https://developer.amazon.com/alexa, last accessed 2023/5/20.

9. Goyal, A.; Metallinou, A.; Matsoukas, S. Fast and Scalable Expansion of Natural Lan-

guage Understanding Functionality for Intelligent Agents. In Proceedings of the 2018 Con-

ference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, New Orleans, LA, USA, 1–6 June 2018.

10. OpenWeave, https://openweave.io/, last accessed 2023/5/20.

11. HomeKit Overview, https://developer.apple.com/apple-home, last accessed 2023/5/20.

12. SmartThings Developers, https://developer.smartthings.com/, last accessed 2023/5/20.

13. Campagna, G., Ramesh, R., Xu, S., Fischer, M., Lam, M. S.: Almond: the architecture of

an open, crowdsourced, privacy-preserving, programmable virtual assistant. In Proceed-

ings of the 26th International Conference on World Wide Web, pp. 341-350 (2017).

14. Campagna, G., Xu, S., Moradshahi, M., Socher, R., Lam, M. S.: Genie: A generator of

natural language semantic parsers for virtual assistant commands. In Proceedings of the

40th ACM SIGPLAN Conference on Programming Language Design and Implementation,

394-410 (2019).

15. Campagna, G., Semnani, S., Kearns, R., Sato, L. J. K., Xu, S., Lam, M.: A few-shot se-

mantic parser for wizard-of-oz dialogues with the precise ThingTalk pepresentation. In

Findings of the Association for Computational Linguistics: ACL 2022, pp. 4021-4034.

Dublin, Ireland (2022).

16. Genie Wiki, https://wiki.genie.stanford.edu/, last accessed 2023/5/20.

17. Taiwan Economic Journal, https://www.finasia.biz/, last accessed 2023/5/20.

18. MariaDB, https://mariadb.org/, last accessed 2023/5/20.

19. Flask-RESTful, https://flask-restful.readthedocs.io/en/latest/, last accessed 2023/5/20.

20. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V.,

Zettlemoyer, L.: BART: Denoising Sequence-to-Sequence Pre-training for Natural Lan-

guage Generation, Translation, and Comprehension. ACL 2020.

21. Introducing ChatGPT, https://openai.com/blog/chatgpt, last accessed 2023/5/20.

https://developer.apple.com/apple-home
https://flask-restful.readthedocs.io/en/latest/
https://openai.com/blog/chatgpt

