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Abstract. To comply with the specific requirements of smart grids, Chen et al. 
proposed a data aggregation scheme by utilizing double blockchains and the 
Paillier cryptosystem that is an additive homomorphic encryption system for 
public-key cryptography. Chen et al. claimed that their scheme could resist var-
ious attacks and ensure data confidentiality, data integrity, validity, identity an-
onymity and authenticity. However, after thoroughly analyzing their scheme, 
we find that it suffers from five flaws. Firstly, anonymity is not ensured as 
claimed. Secondly, private keys of smart meters and fog nodes can be easily re-
trieved. Thirdly, after a smart meter or a fog node’s private key is revealed, a 
malicious entity can impersonate it and generate a valid signature of the forged 
data’s ciphertext. Fourthly, in both of the UA-blockchain generation phase and 
FA-blockchain generation phase, the signature verification will never succeed. 
Fifthly, some statements in Chen et al.’s scheme are inaccurate or missing such 
that their scheme cannot work as claimed. The details of how these flaws dam-
age Chen et al.’s scheme are shown in this paper. 

Keywords: Blockchain, Smart Grid, Authentication, Homomorphism, Ano-
nymity, Fog Computing, Data Aggregation. 

1 Introduction 

Smart grids are designed to manage the two-way flow of electricity and information 
between utilities and users. Digital technologies are used to improve the efficiency, 
reliability, and security of the grid and to provide users more information and control 
over their energy usage. For example, smart meters can send users’ electricity con-
sumption information to the control center, and the control center can analyze the 
obtained information to provide users with electricity consumption reports and sug-
gestions to save energy. However, smart grids have special communication and com-
puting requirements such that they need to be deployed widely. In addition, users’ 
electricity consumption information sent by smart meters is often collected and stored 
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by electricity suppliers without the appropriate permission. The data may be accessed 
by a third party such that users’ living habits and related economic status will be re-
vealed. This leads to privacy breaches while users are not aware that their personal 
data is being collected and shared in this way. That is, how to protect user privacy is 
an important issue in smart grids. On the other hand, because of the properties of 
smart grids, a variety of attacks may result in catastrophic damage. Thus, how to en-
sure the security of smart grids is another essential issue that has to be taken into con-
sideration, and proper security mechanisms need to be employed to protect smart 
grids from these various attacks such as eavesdropping, tampering, and counterfeiting. 
Besides, performance is also a key issue to determine whether a smart grid can work 
and offer desired services well or not. To sum up, performance, privacy, and security 
are the main issues in smart grids. And data aggregation can be regarded as a repre-
sentative mechanism in smart grids because of its remarkable advantages. Thus, a 
plenty of data aggregation schemes preserving privacy are proposed [1-7]. 

Zhang et al. [8] took advantages of the superior features of blockchain such as  
non-repudiation, untamperability, decentralization, and easy-to-trace and proposed a 
keyless signature scheme based on the blockchain architecture for smart grids. In 
Zhang et al.’s scheme, a new consensus mechanism is designed to turn the blockchain 
into an automatic access control manager such that no trusted third party is needed. 
Because blockchain possesses superior features, several researches are proposed from 
then on. In 2020, Alcaraz et al. [9] proposed a smart grid structure by using the three-
layer-based interconnection architecture and blockchain technology to manage con-
nections among devices, resources, and processes while ensuring reliability and secu-
rity. Li et al. [10] proposed a blockchain-based anomalous electricity consumption 
detection method for smart grids. In Li et al.’s method, electricity consumption data is 
from readings of sensors and smart meters, a trained machine learning model is 
adopted to detect electricity consumption anomalies, and the blockchain is used to 
record all processes. 

Recently, Chen et al. [11] proposed a data aggregation scheme for smart grids with 
a double-blockchain structure, which is called the double-blockchain-assisted secure 
and anonymous data aggregation scheme, DA-SADA. DA-SADA presents a network 
model with three layers, user layer, fog computing layer, and service supporting layer. 
And, there are two types of blockchains, UA-blockchain and FA-blockchain. In the 
user layer, the whole area is divided into several subareas, and smart meters SM’s are 
deployed to collect users’ electricity consumption information. In a subarea, data 
collected by smart meters is encrypted and sent to a specific smart meter, namely an 
aggregation node in the user layer. An aggregation node in the user layer is responsi-
ble for aggregating data, generating the new block in UA-blockchain and sending the 
generated UA-blockchain to the subarea’s corresponding fog node in the fog compu-
ting layer. In the fog computing layer, when a fog node receives information, it gener-
ate the corresponding digital signature and sends required data to a specific node, 
namely an aggregation node in the fog computing layer. The aggregation node in the 
fog computing layer is responsible for aggregating data, generating the new block in 
FA-blockchain and sending the generated FA-blockchain to the cloud server in the 
service supporting layer. When the cloud server receives the FA-blockchain, it can 
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retrieve the needed information and make analysis to further determine strategies and 
improve the power utilization efficiency. 

However, after thoroughly analyzing their scheme, DA-SADA, we find that it suf-
fers from five flaws. Firstly, anonymity is not ensured as claimed. Secondly, private 
keys of smart meters and fog nodes can be easily retrieved. Thirdly, after a smart 
meter or a fog node’s private key is revealed, a malicious entity can impersonate it 
and generate a valid signature of the forged data’s ciphertext. Fourthly, in both of the 
UA-blockchain generation phase and FA-blockchain generation phase, the signature 
verification will never succeed. Fifthly, some statements in DA-SADA are inaccurate 
or missing such that it cannot work as claimed. 

The rest of this paper is organized as follows: Section 2 reviews DA-SADA. The 
security analysis of DA-SADA is made in Section 3. At last, some conclusions are 
made in Section 4. 

2 Review of DA-SADA 

In this section, we review the double-blockchain assisted secure and anonymous data 
aggregation scheme, DA-SADA, proposed by Chen et al. DA-SADA consists of four 
phases, system initialization phase, UA-blockchain generation phase, FA-blockchain 
generation phase, and service supporting phase. Notations commonly used in DA-
SADA are listed in Table 1, and the details are as follows. 

Table 1. Notations used in DA-SADA. 

Notation Definition 

TA a trust authority that generates parameters for all devices 

p, q two large prime numbers 

κ a system security parameter denotes the length of prime numbers 

N/λ the system public/ private key 

SMij the i-th smart meter in the j-th subarea 

Xij SMij’s public key 

Yij SMij’s private key 

Pseuij SMij’s pseudonym 

fogj the fog node responsible for the j-th subarea in the user layer 

Xj fogj’s public key 

Yj fogj’s private key 

H(.) a cryptographic hash function 

|| the concatenation operator 

2.1 System Initialization Phase  

In DA-SADA, TA is responsible for system initialization. First, TA generates all sys-
tem parameters including the system’s public and private keys, all smart meters and 
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fog nodes’ public and private keys, and pseudonyms for all smart meters and fog 
nodes. Then, TA distributes system parameters. At last, TA generates Bloom filters for 
all subareas and a Bloom filter in the fog computing layer. The details are as follows: 
Step 1. TA selects the security parameter κ and two prime numbers p and q of length 

κ bits. 
Step 2. TA computes the system public key N = p  q and the system private key λ = 

lcm(p-1, q-1) for the homomorphic encryption algorithm. 
Step 3. TA chooses a number r ∈ ℤே

∗  randomly, computes s = rN mod N2, and defines 

a function L(u) = 
௨ିଵ

ே
, where u denotes the input of the function L(). 

Step 4. For each smart meter SMij, TA randomly chooses a prime number Xij as 
SMij’s public key and computes SMij’s private key Yij = Xij

-1 mod N2 and 
SMij’s pseudonym Pseuij = Xij mod N2. 

Step 5. For each fog node fogj, TA randomly chooses a prime number Xj as fogj’s 
public key and computes fogj’s private key Yj = Xj

-1 mod N2 and fogj’s pseu-
donym Pseuj = Xj mod N2. 

Step 6. TA chooses a cryptographic hash function H(.): {0, 1}* → ZN
*. 

Step 7. After λ, N, s, H(.), Xij, Yij, Xj, and Yj are generated, N and H(.) are published 
online while (Xij, Yij, s), (Xj, Yj), and λ are assigned to SMij, fogj, and the cloud 
server through a secure channel, respectively. 

Step 8. For the j-th subarea, TA collects pseudonyms of all corresponding smart me-
ters and generates a Bloom filter that is a θ-bit array and the element’s value 
is set to one when its index is equal to H(Pseuij) mod θ. Similarly, TA col-
lects pseudonyms of fog nodes to generate a Bloom filter in the fog compu-
ting layer. 

Step 9. At last, TA sends Bloom filters generated for subareas to the corresponding 
smart meters and the Bloom filter in the fog computing layer to fog nodes. 

 

 

Fig. 1. The structure of UA-blockchain and how the Merkle root is generated in DA-SADA. 
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2.2 UA-Blockchain Generation Phase  

After the system is initialized, each smart meter encrypts a user’s power consumption 
data and generates the corresponding signature for integrity. Then, one of smart me-
ters in the same subarea is chosen as the aggregation node in the user layer because it 
possesses the most remaining computational resources. The aggregation node collects 
reports of smart meters, verifies signatures, obtains the aggregated ciphertext, and 
generates the transaction, where the aggregation node and these smart meters are in 
the same subarea. The aggregation node records the transaction in a block and broad-
casts this block in the subarea for authentication. When the number of positive verifi-
cation results reaches the threshold, the new block is added to the UA-blockchain in 
the user layer. Fig. 1 depicts the structure of the UA-blockchain and how the corre-
sponding Merkle root is generated. The details of this phase are as follows: 
Step 1. In the j-th subarea in a certain time slot ts, SMij first sets a parameter g = N + 

1 and encrypts the collected data dij by computing Cij = (1 + dijN)  s mod N2 
instead of 𝑔ௗ೔ೕ  rN mod N2 to improve computation efficiency, where Cij = 
𝑔ௗ೔ೕ   rN mod N2 = (𝑁 + 1)ௗ೔ೕ   rN mod N2 = (1 + dijN)  s mod N2, i is in [1, 
n] and n denotes the number of smart meters in the j-th subarea. 

Step 2. SMij uses the encrypted data Cij, its pseudonym Pseuij, its private key Yij, and 

the timeslot ts to generate the signature σij = H൫𝑢௜௝||𝑃𝑠𝑒𝑢௜௝൯
௒೔ೕ  mod N2, 

where uij = H(Cij || ts). 
Step 3. SMij sends the report {Pseuij, ts, Cij, σij} to the aggregation node. 
Step 4. After receiving the report {Pseuij, ts, Cij, σij}, the aggregation node checks the 

effectiveness of Pseuij with the Bloom filter and the validity of the report 
with the timestamp. 

Step 5. The aggregation node uses batch verification to verify these received signa-

tures by checking if ∏ 𝜎
௜௝

௑೔ೕ௡
௜ୀଵ  mod N2 = ∏ 𝐻௡

௜ୀଵ (𝐻൫𝐶௜௝||𝑡௦൯||𝑃𝑠𝑒𝑢௜௝) mod 

N2. 
Step 6. If it holds, the aggregation node obtains the aggregated ciphertext Cj for the 

j-th subarea by computing Cj = ∏ 𝐶௜௝
௡
௜ୀଵ  mod N2 and generates the transac-

tion Tx = (Cj, Pseuij, ts). 
Step 7. Then the aggregation node records the transaction Tx = (Cj, Pseuij, ts) in a 

new block that also includes the Merkle root, the hash value of the previous 
block Hprev-block, and the hash value of the current block Hcurr-block, where the 
Merkle root is obtained by setting a leaf node’s value with the ciphertext and 
the pseudonym and hashing them and the corresponding hash results as 
shown in Figure 4, and Hcurr-block = SHA256(index + Hprev-block + Pseuij + 
timestamp + Cj + ∑ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠௜௝௜௝ ). 

Step 8. After generating the new block, the aggregation node broadcasts it in the j-th 
subarea. Then, each smart meter SMij, an ordinary node, verifies records in 
the new block and its related data only by checking whether it is identical to 
the original data or not. If the verification is successful, the smart meter SMij, 
an ordinary node, broadcasts the verification result in the j-th subarea. 
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Step 9. If the number of the correctness confirmation messages sent by other distinct 
smart meters in the j-th subarea is equal to or more than 2n/3+1, the new 
block is considered to be valid and added to the UA-blockchain, where n de-
notes the number of smart meters in the j-th subarea. 

 
2.3 FA-Blockchain Generation Phase 

The process to generate the FA-blockchain is similar to that to generate the UA-
blockchain. In the FA-blockchain generation phase, each fog node first receives en-
crypted data from the corresponding UA-blockchain and generates the corresponding 
signature of the encrypted data for integrity. Then, one of fog nodes is chosen as the 
aggregation node in the fog computing layer because it possesses the most remaining 
computational resources. The aggregation node in the fog computing layer collects 
reports of fogs, verifies signatures, obtains the aggregated ciphertext for all subareas, 
and generates the transaction. The aggregation node in the fog computing layer rec-
ords the transaction in a block and broadcasts this block to other fog nodes for authen-
tication. When the number of positive verification results reaches the threshold, the 
new block is added to the FA-blockchain in the fog computing layer. The details of 
the FA-blockchain generation phase are as follows: 
Step 1. When fogj that is responsible for the j-th subarea gets the aggregated power 

consumption ciphertext Cj, fogj uses the encrypted data Cj, its pseudonym 
Pseuj, its private key Yj, and the timeslot ts to generate the signature σj = 

H൫𝑢௝||𝑃𝑠𝑒𝑢௝൯
௒ೕ  mod N2, where j is in [1, m], m denotes the number of fog 

nodes in the fog computing layer and uj = H(Cj || ts). 
Step 2. fogj sends the report {Pseuj, ts, Cj, σj} to the aggregation node in the fog 

computing layer. 
Step 3. After receiving the report {Pseuj, ts, Cj, σj}, the aggregation node in the fog 

computing layer checks the effectiveness of Pseuj with the Bloom filter and 
the validity of the report with the timestamp. 

Step 4. The aggregation node in the fog computing layer uses batch verification to 

verify these received signatures by checking if ∏ 𝜎
௝

௑ೕ௠
௝ୀଵ  mod N2 = 

∏ 𝐻௠
௝ୀଵ (𝐻൫𝐶௝||𝑡௦൯||𝑃𝑠𝑒𝑢௝) mod N2. 

Step 5. If it holds, the aggregation node in the fog computing layer obtains the ag-
gregated ciphertext CAS for all subareas by computing CAS = ∏ 𝐶௝

௠
௝ୀଵ  mod N2 

and generates the transaction Tx = (CAS, Pseuj, ts). 
Step 6. Then the aggregation node in the fog computing layer records the transaction 

Tx = (CAS, Pseuj, ts) in a new block that also includes the Merkle root, the 
hash value of the previous block Hprev-block, and the hash value of the current 
block Hcurr-block, where Hcurr-block = SHA256(index + Hprev-block + Pseuj + 
timestamp + CAS + ∑ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠௝௝ ). 

Step 7. After generating the new block, the aggregation node in the fog computing 
layer broadcasts it to other fog nodes. Then, each fog node fogj, an ordinary 
node in the fog computing layer, verifies records in the new block and veri-
fies its related data only by checking whether it is identical to the original da-
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ta or not. If the verification is successful, the fog node fogj, an ordinary node 
in the fog computing layer, broadcasts the verification result to other fog 
nodes in the fog computing layer. 

Step 8. If the number of the correctness confirmation messages sent by other distinct 
fog nodes in the fog computing layer is equal to or more than 2m/3+1, the 
new block is considered to be valid and added to the FA-blockchain, where 
m denotes the number of fog nodes in the fog computing layer. 

 
2.4 Service Supporting Phase 

When the cloud server receives the FA-blockchain of the fog computing layer, it gets 
the aggregated power consumption ciphertext CAS for all subareas and decrypts it to 
get the aggregated plaintext M = L(CAS

λ mod N2) / L(gλ mod N2) by using the decryp-
tion procedure mentioned in the Paillier cryptosystem. Then the cloud server recovers 
subareas’ data UAj’s with their proposed Horner rule-based analytical algorithm, 
where UAj = ∑ 𝑑௜௝

௡
௜ୀଵ  and M = ∑ 𝑈𝐴௝

௠
௝ୀଵ . When the cloud server obtains the power 

consumption of each subarea, the future power usage of each subarea can be predict-
ed, and decision support for power dispatch and price adjustment can be provided. 

3 Security Analysis of DA-SADA 

Chen et al. claimed that DA-SADA could resist various attacks and ensure data confi-
dentiality, data integrity, validity, identity anonymity and authenticity. However, after 
thoroughly analyzing DA-SADA, we find that it suffers from five flaws. Firstly, ano-
nymity is not ensured as claimed because a smart meter’s pseudonym is fixed. Sec-
ondly, private keys of smart meters and fog nodes can be easily retrieved. Thirdly, 
after a smart meter or a fog node’s private key is revealed, a malicious entity can im-
personate it and generate a valid signature of the forged data’s ciphertext. Fourthly, in 
both of the UA-blockchain generation phase and FA-blockchain generation phase, the 
signature verification will never succeed such that legal signatures are always regard-
ed as invalid. Fifthly, some statements in DA-SADA are inaccurate or missing such 
that DA-SADA cannot work as claimed. The details are as follows: 

 
3.1 Failure to Ensure Anonymity 

In the system initialization phase, TA randomly chooses a prime number Xij as the 
smart meter SMij’s public key and computes SMij’s private key Yij = Xij

-1 mod N2 and 
SMij’s pseudonym Pseuij = Xij mod N2. And, TA randomly chooses a prime number Xj 
as the fog node fogj’s public key and computes fogj’s private key Yj = Xj

-1 mod N2 and 
fogj’s pseudonym Pseuj = Xj mod N2. Each smart meter SMij’s pseudonym Pseuij and 
each fog node fogj’s pseudonym Pseuj are always fixed because they are not updated 
in other phases. Moreover, these pseudonyms are not concealed when transmitted or 
included in blocks. Thus, a specific smart meter or fog node will be traced or moni-
tored. According to the above, anonymity is not ensured in Chen et al.’s scheme. 
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3.2 Disclosure of the Private Key 

In the system initialization phase, a smart meter SMij is assigned with the private key 
Yij and the public key Xij, where Yij = Xij

-1 mod N2 and SMij’s pseudonym Pseuij = Xij 
mod N2. SMij’s pseudonym Pseuij will be transmitted in the UA-blockchain generation 
phase or included in blocks of the UA-blockchain, so Pseuij can be easily obtained. In 
addition, the parameter N is published online. Thereupon, SMij’s private key Yij can be 
retrieved by computing Yij = Pseuij

-1 mod N2 = Xij
-1 mod N2. Similarly, a fog node fogj 

is assigned with the private key Yj and the public key Xj, where Yj = Xj
-1 mod N2 and 

fogj’s pseudonym Pseuj = Xj mod N2. Because fogj’s pseudonym Pseuj will be trans-
mitted in the FA-blockchain generation phase or included in blocks of the FA-
blockchain, Pseuj can be easily obtained. Thereupon, fogj’s private key Yj can be re-
trieved by computing Yj = Pseuj

-1 mod N2 = Xj
-1 mod N2. As a result, private keys of 

smart meters and fog nodes can be easily retrieved in Chen et al.’s scheme. 
 

3.3 Generation of a Valid Signature of the Forged Data’s Ciphertext 

After a smart meter’s private key is revealed, a malicious entity can impersonate it 
and generate a valid signature of the forged data’s ciphertext. The details are as fol-
lows. In the system initialization phase, a smart meter SMij is assigned with the private 
key Yij, the public key Xij, and s securely, where s = rN mod N2 and r ∈ ℤே

∗ . In the UA-
blockchain generation phase, SMij computes the ciphertext Cij of the data dij by com-
puting  Cij = (1 + dijN)  s mod N2. Actually, the Paillier homomorphic cryptosystem 
allows a user to compute his/her personal ciphertext with an arbitrary random number, 
and the receiver who gets the aggregated ciphertext can retrieve the aggregated data 
without knowing what the involved random numbers are. That is, the malicious entity 
can chooses a random number rij ∈ ℤே

∗ , generates the forged data dij, and computes 
the corresponding ciphertext Cij by computing Cij = 𝑔ௗ೔ೕ  rij

 N mod N2. After retriev-
ing a smart meter SMij’s private key Yij by computing Yij = Pseuij

-1 mod N2, the mali-

cious entity computes uij = H(Cij|| ts) and the signature σij = H൫𝑢௜௝||𝑃𝑠𝑒𝑢௜௝൯
௒೔ೕ mod 

N2 and sends the report {Pseuij, ts, Cij, σij} to the aggregation node. Thus, after re-
trieving a smart meter SMij’s private key Yij, a malicious entity can impersonate SMij 
and further generate a valid signature of the forged data’s ciphertext. Similarly, be-
cause a fog node fogj’s private key Yj can be easily retrieved, a malicious entity can 
impersonate fogj and generate a valid signature of the forged data’s ciphertext as well. 

 
3.4 Failed Signature Verification 

In both of the UA-blockchain generation phase and FA-blockchain generation phase, 
an aggregation node verifies signatures with batch verification. In the UA-blockchain 
generation phase, the aggregation node in the user layer verifies these received signa-

tures σij’s by checking if ∏ 𝜎
௜௝

௑೔ೕ௡
௜ୀଵ  mod N2 = ∏ 𝐻௡

௜ୀଵ (𝐻൫𝐶௜௝||𝑡௦൯||𝑃𝑠𝑒𝑢௜௝) mod N2. 

That is, the equality of 𝜎
௜௝

௑೔ೕ mod N2 and H(H(Cij || ts) || Pseuij) mod N2 is checked with 

a batch approach, where i is in [1, n] and n denotes the number of smart meters in the 
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j-th subarea. Because σij = H൫𝑢௜௝||𝑃𝑠𝑒𝑢௜௝൯
௒೔ೕmod N2 and uij = H(Cij || ts), 𝜎௜௝

௑೔ೕmod N2 

= H൫𝐻൫𝐶௜௝||𝑡௦൯||𝑃𝑠𝑒𝑢௜௝൯
௒೔ೕ௑೔ೕ mod N2. Unfortunately, 𝜎

௜௝

௑೔ೕ mod N2  H(H(Cij || ts) || 

Pseuij) mod N2. In the system initialization phase, the smart meter SMij is assigned 
with the private key Yij and the public key Xij, where Yij = Xij

-1 mod N2 and SMij’s 

pseudonym Pseuij = Xij mod N2. To show that 𝜎
௜௝

௑೔ೕmod N2  H(H(Cij || ts) || Pseuij) 

mod N2, an example is given. First, we set N = 3  5 and randomly select a prime 
number Xij = 227, the private key Yij = 227-1 mod 225 = 113. Suppose H(uij || Pseuij) = 

H(H(Cij || ts) || Pseuij) = 2. Then the signature σij = H൫𝑢௜௝||𝑃𝑠𝑒𝑢௜௝൯
௒೔ೕmod N2 = 2113 

mod 225 = 109, and 𝜎
௜௝

௑೔ೕmod N2 = 109227 mod 225 = 121  H(H(Cij || ts) || Pseuij). As 

a result, valid signatures will be never verified successfully in the UA-blockchain 
generation phase. Similarly, in the FA-blockchain generation phase, the aggregation 
node in the fog computing layer verifies these received signatures σj’s by checking if 

∏ 𝜎
௝

௑ೕ௠
௝ୀଵ  mod N2 = ∏ 𝐻௠

௝ୀଵ (𝐻൫𝐶௝||𝑡௦൯||𝑃𝑠𝑒𝑢௝) mod N2. That is, the equality of 𝜎
௝

௑ೕ 

mod N2 and H(H(Cj || ts) || Pseuj) mod N2 is checked with a batch approach, where j is 
in [1, m] and m denotes the number of fog nodes in the fog computing layer. Because 

σj = H ൫𝑢௝||𝑃𝑠𝑒𝑢௝൯
௒ೕ mod N2 and uj = H(Cj || ts), 𝜎

௝

௑ೕ mod N2 = 

H൫𝐻൫𝐶௝||𝑡௦൯||𝑃𝑠𝑒𝑢௝൯
௒ೕ௑ೕ  mod N2. Unfortunately, 𝜎

௝

௑ೕmod N2  H(H(Cj || ts) || Pseuj) 

mod N2 because the fog node fojj is assigned with the private key Yj and the public 
key Xj, where Yj = Xj

-1 mod N2. As a result, valid signatures will be never verified 
successfully in the FA-blockchain generation phase. 

 
3.5 Inaccurate and Missing Statements 

Some statements in the proposed scheme are inaccurate or missing such that Chen et 
al.’s scheme cannot work as claimed. The details are as follows. 

How to Obtain the Related Public Keys. In the system initialization phase, after TA 
generates λ, N, s, H(.), Xij, Yij, Xj, and Yj, N and H(.) are published online while (Xij, 
Yij, s), (Xj, Yj), and λ are assigned to SMij, fogj, and the cloud server through a secure 
channel, respectively. In the UA-blockchain generation phase, the aggregation node in 
the user layer needs each smart meter SMij’s public key Xij to verify the received sig-

natures σij’s by checking if ∏ 𝜎
௜௝

௑೔ೕ௡
௜ୀଵ  mod N2 = ∏ 𝐻௡

௜ୀଵ (𝐻൫𝐶௜௝||𝑡௦൯||𝑃𝑠𝑒𝑢௜௝) mod N2. 

In the FA-blockchain generation phase, the aggregation node in the fog computing 
layer needs each fog node fogj’s public key Xj to verify the received signatures σj’s by 

checking if ∏ 𝜎
௝

௑ೕ௠
௝ୀଵ  mod N2 = ∏ 𝐻௠

௝ୀଵ (𝐻൫𝐶௝||𝑡௦൯||𝑃𝑠𝑒𝑢௝) mod N2. However, how 

these aggregation nodes obtain the related public keys Xij’s and Xj’s is missing. 

Inaccurate Block Structure. Aggregation nodes in the user layer and fog computing 
layer store the transactions in blocks of the UA-blockchain and FA-blockchain, re-
spectively. In the UA-blockchain generation phase, the aggregation node in the user 
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layer generates the transaction Tx = (Cj, Pseuij, ts) and records the transaction (Cj, 
Pseuij, ts) in a new block that also includes the Merkle root, the hash value of the pre-
vious block Hprev-block, and the hash value of the current block Hcurr-block, where the 
Merkle root is obtained by setting a leaf node’s value with the ciphertext and the 
pseudonym and hashing them and the corresponding hash results as shown in Figure 
4, and Hcurr-block = SHA256(index + Hprev-block + Pseuij + timestamp + Cj + 
∑ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠௜௝௜௝ ). And, the aggregation node broadcasts the new block in the j-th 
subarea. Then, each smart meter SMij, an ordinary node, verifies records in the new 
block and verifies its related data only by checking whether it is identical to the origi-
nal data or not. If the verification is successful, SMij broadcasts the verification result 
in the j-th subarea.When the number of the correctness confirmation messages sent by 
other distinct smart meters in the j-th subarea is equal to or more than 2n/3+1, the new 
block is considered to be valid and added to the UA-blockchain. However, parameters 
or symbols index, Pseuij, timestamp, ∑ 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠௜௝௜௝ , and “+” are not defined 
accurately. And, only one transaction Tx = (Cj, Pseuij, ts) is recorded in the new block 
while all involved Cij’s are absent. This approach makes it impossible for each smart 
meter SMij, an ordinary node, to verify its related data only by checking whether it is 
identical to the original data or not. Moreover, SMij, an ordinary node, cannot verify 
whether Cij is indeed aggregated to generate Cj. Thus, as shown in Fig. 2, a block 
should be modified to consist of a block header and a block body. The block head 
should include the sequence number of the block index, all involved transactions (Cij, 
Pseuij, ts)’s, the pseudonym of the aggregation node in the user layer, the aggregated 
ciphertext Cj, the Merkle root, the hash value of the previous block Hprev-block, and the 
hash value of the current block Hcurr-block, where Hcurr-block = SHA256(index || Hprev-block 
|| the pseudonym of the aggregation node in the user layer || ts || Cj || transactions || the 
Merkle root) and the Merkle root is obtained by setting a leaf node’s value with the 
ciphertext Cij and the corresponding pseudonym Pseuij and hashing them to get the 
corresponding hash results hierarchically. The corresponding Merkle tree is stored in 
the block body. 

On the other hand, the similar problems will be encountered in the FA-blockchain 
generation phase. To overcome these problems, some modifications should be made. 
For simplicity, the differences between blocks of the UA-blockchian and those of the 
FA-blockchain are listed. First, transactions (Cj, Pseuj, ts)’s, the pseudonym of the 
aggregation node in the fog computing layer and the aggregated ciphertext CAS instead 
of (Cij, Pseuij, ts)’s, the pseudonym of the aggregation node in the user layer and Cj are 
stored in the block header of the FA-blockchain. Second, Hcurr-block = SHA256(index || 
Hprev-block || the pseudonym of the aggregation node in the fog computing layer || ts || 
CAS || transactions || the Merkle root), and the Merkle root is obtained by setting a leaf 
node’s value with the ciphertext Cj, the corresponding pseudonym Pseuj, and the time 
slot ts, and hashing them to get the corresponding hash results hierarchically. 

Failure to Retrieve Subareas’ Data. When the cloud server receives the FA-
blockchain of the fog computing layer, it gets the aggregated power consumption 
ciphertext CAS for all subareas and decrypts it by using the Paillier homomorphic de-



cryption algorithm to get the aggregated plaintext 
Chen et al.’s proposed a Horner rule
covers subareas’ data UAj

theoretical derivations to show why their proposed Horner rule
rithm can recovers subareas
cannot work, either. In their designed algorithm, 
that a product of all random numbers 
of UAj should be in [0, N
phase, the aggregation node in the fog computing layer 
(CAS, Pseuj, ts) and records the transaction 
only one transaction Tx = (
volved Cj’s are absent in the FA
er to retrieves subareas’ data

Fig. 2. The structure of the modified blockchain

4 Conclusions 

e specific requirements of smart grids. They claimed that their scheme could 
against various attacks and guarantee data confidentiality, data integrity, validity, 
anonymity of identity, and authenticity.
scheme, we find that it suffers from five flaws. Firstly, 
smart meters and fog nodes are fixed, anonymity is not guaranteed as claimed.
ondly, private keys of smart meters and fog nodes can be easily obtained.
after a smart meter or fog node
personate it and generate a valid signature of the forged data

cryption algorithm to get the aggregated plaintext M = L(CAS
λ mod N2) / L(gλ mod N

s proposed a Horner rule-based analytical algorithm and attempted to r
UAj’s, where UAj = ∑ 𝑑௜௝

௡
௜ୀଵ  and M = ∑ 𝑈𝐴௝

௠
௝ୀଵ . However, the 

theoretical derivations to show why their proposed Horner rule-based analytical alg
rithm can recovers subareas’ data are not correct. Meanwhile, the designed algorithm 
cannot work, either. In their designed algorithm, UAj is computed with a modulus 
that a product of all random numbers rj’s. This makes UAj is in [0, R] while the range 

N2-1]. On the other hand, in the FA-blockchain generation 
, the aggregation node in the fog computing layer generates the transaction T

and records the transaction (CAS, Pseuj, ts) in a new block. Because 
= (CAS, Pseuj, ts) is recorded in the new block while all i

s are absent in the FA-blockchain. Thus, it is impossible for the cloud ser
data UAj’s because Cj’s are unknown. 

cture of the modified blockchain. 

e specific requirements of smart grids. They claimed that their scheme could defend
against various attacks and guarantee data confidentiality, data integrity, validity, 
anonymity of identity, and authenticity. However, after thoroughly analyzing their 
scheme, we find that it suffers from five flaws. Firstly, because the pseudonyms of th
smart meters and fog nodes are fixed, anonymity is not guaranteed as claimed. Se

, private keys of smart meters and fog nodes can be easily obtained. Thirdly, 
after a smart meter or fog node’s private key is revealed, a malicious entity can i

ate it and generate a valid signature of the forged data’s ciphertext. Fourthly, 
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N2). 
based analytical algorithm and attempted to re-

However, the 
based analytical algo-

data are not correct. Meanwhile, the designed algorithm 
modulus R 

] while the range 
blockchain generation 

Tx = 
in a new block. Because 

is recorded in the new block while all in-
cloud serv-

defend 
against various attacks and guarantee data confidentiality, data integrity, validity, 

after thoroughly analyzing their 
because the pseudonyms of the 

Sec-
Thirdly, 

s private key is revealed, a malicious entity can im-
Fourthly, in 
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both of the UA-blockchain generation phase and FA-blockchain generation phase, the 
signature verification will never succeed such that legal signatures are always regard-
ed as invalid. Fifthly, in Chen et al.’s scheme, how to obtain the related public keys is 
absent, the block structure is inaccurate, and the cloud server cannot retrieve subare-
as’ data. Due to the above analysis, proper modification is needed; otherwise, Chen et 
al.’s scheme can neither work nor preserve the claimed superior properties. 
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