
mKIPS: A Lightweight Modular Kernel-Level Intrusion

Detection and Prevention System

Yuan-Zheng Yi1 and Mei-Ling Chiang2,*

1,2 Department of Information Management, National Chi Nan University, Taiwan, R.O.C.

s105213529@mail1.ncnu.edu.tw1, joanna@mail.ncnu.edu.tw2,*

Abstract. With many research results and the development of related tools, user-

level intrusion detection and prevention systems (IDPS) have been widely used

to defend systems against network attacks. However, there are still bottlenecks

in their high packet drop rate and low detection efficiency under heavy network

traffic. In contrast, kernel-level IDPS has a higher packet detection rate and

higher efficiency, whereas kernel-level design faces many challenges. The sys-

tem designed with the monolithic architecture has high performance. The dynam-

ically loadable module architecture design has higher flexibility and scalability;

however, the increased operating costs lower system performance.

This paper explores the modular architecture of kernel-level IDPS that can ex-

pand or reconfigure system functions through dynamic plug-in modules and

maintain the system’s stability and high performance. We have developed a light-

weight, high-efficiency, scalable, and highly modular kernel-level IDPS named

mKIPS. This modular architecture divides the system into several kernel mod-

ules, in which functional components can be dynamically inserted or removed

during runtime to adapt to changing demands. Therefore, administrators can con-

trol the IDPS’s packet processing by mounting modules of different versions and

functions for their needs. Besides, mKIPS dispatches packets to various cores for

processing through software and hardware functions by properly setting the IRQ

affinity and using Receive Packet Steering technology. As a result, the load of

each core can be more balanced to utilize the multicores. Experimental results

show that our mKIPS can achieve a high detection rate and efficiency.

Keywords: Intrusion Detection and Prevention System, Multicore Systems,

Kernel Level, Linux Kernel.

1 Introduction

As network attack events occur frequently, providing system security for information

systems is an important issue. The intrusion detection and prevention system (IDPS)[1-

5] has been proven effective against information security attacks.

IDPSs can be classified into several categories according to deployment, functional-

ity, and detection methods. The network-based IDPS is deployed within the network

structure to monitor network traffic in real-time, which analyzes network packets to

detect and prevent intrusions. The host-based IDPS is deployed on the host node of the

2

information system, which analyzes the activity of the host to identify potential intru-

sions or unauthorized activities. The detection method can be misuse detection, which

checks the signature by comparing the network traffic or host behavior against a prede-

fined set of signatures to detect known threats. Another detection method can be anom-

aly detection, which monitors the system’s operation to detect anomalies that could

indicate an attack or suspicious activity. IDPSs can be implemented and run at the ker-

nel level or user level.

Snort[6] and Suricata[7] are the famous open-source network IDPS widely used in

related fields and research. However, our practical experience and previous research

[8] observed that Snort operating at the user level could not handle packet inspection

under heavy network traffic, and its packet drop rate is relatively high. Compared with

Snort and Suricata operating at the user level, kernel-level IDPS can directly intervene

in the kernel’s processing flow of network packets and detect threats as soon as packets

are received or sent. Furthermore, it can avoid the operating cost of copying packets to

the user level for inspection, waiting for the kernel scheduler’s scheduling to execute

user-level IDPS, and switching the protection domain back and forth between kernel

mode and user mode, significantly reducing the impact on network performance.

Although kernel-level IDPS has the advantages of high efficiency and packet detec-

tion rate, developers need to have an in-depth understanding of operating system (OS)

operations because it is within the kernel and directly interacts with kernel operations.

Furthermore, because it operates at the kernel level, if there is a problem with the IDPS

system design or a program bug is generated due to the negligence of the developers, it

is easy to degrade the stability of the OS or directly cause a kernel panic. In addition,

the kernel-level IDPS is highly dependent on the OS kernel. If the source code of the

OS kernel is greatly changed, the kernel-level IDPS may need to be modified accord-

ingly. These factors make it challenging to design and implement a kernel-level IDPS.

Due to the increasing maturity of virtualization technology, its use is becoming in-

creasingly common. Furthermore, data centers virtualize the original physical server

farms due to their many advantages. Therefore, how to perform intrusion detection and

defense in a virtualized environment is also the focus of our research [8]. As a result,

we have developed VMM-IPS [8] operating at the kernel level. It implements a reaction

mechanism to respond to attacks in terms of intrusion detection functions and blocks

the possibility of subsequent attacks by interrupting the attacker’s connection.

From our practical experience [8] and related research [9], it is observed that kernel-

level IDPS has better operating performance and better detection rate than user-level

IDPS. Nevertheless, in contrast, every network packet is inspected because it is in-

volved in the kernel’s processing of network packets. Therefore, when a large number

of packets come in, if the kernel-level IDPS is blocked in the kernel processing flow, it

will affect the system’s stability when encountering a performance bottleneck. There-

fore, if it is necessary to maintain stable operating performance, providing the admis-

sion control mechanism can maintain the system’s quality of service.

On the other hand, some technologies for evading detection and defense systems

(IDS Evasion) [10] have been developed, and the methods are constantly being updated.

With the development of defense tools, network attacks continue to evolve, and every

time a new attack method is discovered, new defense tools, technologies, or systems

3

must be added. However, developing new systems is not easy, and the newly added

functions may also be conflicts with the original system, coupled with the replacing

developers, making the development of the new system difficult. How to effectively

expand system functions to adapt to changing needs has become the research focus.

In view of the increasing diversification of network services and the importance of

network security, we began to study the design and development of an IDPS that is

scalable, highly modular, and located at the kernel level. We study the structure and

dynamic plug-in modules with expandable system functions, as well as the modules for

detecting IDS evasion technology, to make the defense function of the IDPS more com-

plete so that the operation or system development can be more flexible and convenient.

In this paper, we explore the modular architecture of kernel-level IDPS. The critical

work includes designing a lightweight modular architecture that can expand or recon-

figure system functions through dynamic plug-in modules. The goal is to allow the

system to maintain stability and good performance with a high detection rate even under

heavy network traffic. So we developed a lightweight, high-efficiency, scalable, and

highly modular IDPS run in the Linux kernel [11], named mKIPS.

At the same time, we also explored the processing flow of the Linux kernel in re-

ceiving and sending network packets under multicore systems. The Linux system is

based on interrupt and subsequent processing for packet processing. If the same core is

responsible for packet processing, although it can improve its cache usage, the multi-

core’s parallel processing performance is not fully utilized. The Linux networking stack

provides technologies [12-14] for the parallel processing of network packets under mul-

ticore systems, which can improve system performance by distributing packets to cores

for processing through software and hardware setting. We employ these technologies

and correctly set the IRQ affinity to distribute the processing of packets to different

cores to avoid the performance bottlenecks caused by the centralized processing of

packets on the same core. Experimental results show that the proposed mKIPS can have

a very high detection rate and efficiency even under heavy network traffic.

2 Related Work

Snort[6] and Suricata[7] are well-known open-source network-based IDPS. The devel-

opment of Snort is relatively mature. Snort has a large and active developer community

and is widely used in related research. Since version 3.0, Snort has been developed from

scratch with a new software framework, especially in multithreading, automatic con-

figuration, and cross-platform support. It adopts misuse detection technology, operates

at the user level, and captures live network packets from the kernel through the packet

capture library - libpcap[15]. First, the Sniffer module of Snort determines the packet

type and performs statistical analysis. Then the Preprocessor module performs opera-

tions such as decoding and reassembling the packet content. After that, the Detection

Engine module compares the packet payload with the rules of the attack signature da-

tabase. Finally, the Output module determines the packet’s response method and returns

the control to the original processing flow. Snort’s attack signature database is con-

structed based on the threat reports by the Cisco Talos Intelligence Group[16].

4

Like Snort, Suricata[7] is also a user-level network-based IDPS initially developed

using a multithreaded software framework. It is a relatively lightweight IDPS, and its

detection engine also uses misuse detection technology. Its attack signature database is

also built based on the threat reports by the Cisco Talos Intelligence Group. Even so,

the attack signature databases of Snort and Suricata have unique features in their design,

which limits their compatibility.

Many studies on IDPSs work on making IDPSs more effective, efficient, complete,

and with more applications. Gaddam and Nandhini [17] analyzed various IDPSs against

various types of attacks in different environments. They then proposed an architecture

to improve Snort’s detection rate and reduce the packet drops under heavy traffic. In

the study [18] of Yuan et al., Snort is used to form a distributed IDPS. By building

multiple detection nodes, the detection performance is improved. However, there may

be problems with repeated detection of packets. The research suggests that distributed

IDPS should strengthen the communication ability between nodes.

Shah and Issac [19] reported that Suricata could have a lower packet drop rate than

Snort under high network traffic but consumed higher computational resources.

Whereas, Snort had higher detection accuracy. They explored using machine learning

(ML) technology to improve the efficiency and detection rate of IDPS. This study de-

veloped a Snort adaptive plug-in that implements ML algorithms to determine attacks,

and this module runs parallel with Snort’s original detection engine. Shah and Bendale

[20] surveyed related research on using AI technology in IDPS and anomaly detection.

Chin et al. [9] proposed the kernel-level IDS built under the SDN network and dis-

cussed the advantages and challenges of building the IDS at the kernel level. They

pointed out that the kernel-level IDS obtains better performance than the user-level

IDS, and network packets can be immediately examined when packets are received or

sent. The disadvantage is that the kernel-level IDS does not have a rich library of func-

tions available, and developers must have complete knowledge of the kernel to imple-

ment the system. They implemented a kernel-level IDS and constructed it in the SDN

network, and tried to ensure that the network function of the system would not be af-

fected when there were problems with the functional components of the IDS.

The Linux networking stack provides technologies for parallel processing of net-

work packets and improving performance in multicore systems by distributing packets

to different cores for processing through software and hardware, such as Receive Side

Scaling [12-14], Receive Packet Steering [12-14], Receive Flow Steering [12-14], Ac-

celerated Receive Flow Steering [12-14], and Transmit Packet Steering [13,14]. How-

ever, they require experienced administrators to correctly enable and perform settings.

3 System Design and Implementation

3.1 System Overview

The proposed kernel-level IDPS named mKIPS is lightweight and modular. It is imple-

mented as a set of kernel modules that can be dynamically inserted/removed into/from

the Linux kernel during runtime. Its implementation employs the netfilter [21], a

5

packet-filtering framework built into the Linux kernel, to intercept all network packets

entering or leaving the system. The netfilter framework allows developers to register

functions to the hook point to intervene in the kernel’s packet processing flow. There-

fore, the mKIPS module is registered on the PRE_ROUTING hook point of the netfil-

ter. When the packet enters the system, the packet can be sent to the mKIPS for inspec-

tion. After completing the packet inspection, a corresponding response will be given

according to the detection result. If outcoming packets need to be inspected, the mKIPS

module must also be registered on the LOCAL_OUT hook point of the netfilter.

3.2 Lightweight Modular Architecture

This research aims to strike a balance between the system performance and the flexi-

bility of the system architecture. Because too much processing will degrade the system

performance, which affects the packet detection rate under heavy network traffic.

Therefore, we develop a lightweight dynamic modular architecture, which can avoid

excessive processing due to the design providing high flexibility.

The modular architecture of mKIPS divides the system into different Linux kernel

modules. As shown in Figure 1, the calling module is called a demand module, and the

called module is called a supply module. In the implementation, the demanding func-

tion pointers point to the target functions implemented by other modules, and functions

of the mKIPS modules can communicate with each other. The demand module must

declare function pointers and implement an empty function that only returns the default

value. The demand module exports the access authority through Linux kernel macro

EXPORT_SYMBOL. The supply module needs to declare an extern modifier to obtain

the access authority of the demand module and implement the supply function.

Fig. 1. Modular architecture design

When the demand module is inserted into the kernel, its demand function pointer

will point to the empty function. When the supply module is inserted into the kernel,

the demand function pointer will be changed to point to the implemented function of

the supply module. Finally, when the supply module is removed from the kernel, it will

redirect the demand function pointer to the empty function again. Under this frame-

work, the mKIPS’ kernel modules can be dynamically inserted or removed during sys-

tem runtime. The administrator can also control the packet processing flow of IDPS by

Demand Module Supply Module

void (*Function_Pointer) (void)

EXPORT_SYMBOL(Function_Pointer)

void Function_empty(void)

EXPORT_SYMBOL(Function_empty) void Function(void)

extern void (*Function_Pointer) (void)

Point to
Point to

Function Body Function Pointer

6

inserting modules of different versions and functions. This lightweight modular archi-

tecture has less impact on the system operations and performance.

Under this lightweight modular architecture, the mKIPS system is divided into three

kernel modules: the Manager module responsible for intervening in the kernel to pro-

cess network packets, the Detection module for inspecting packet content, and the Re-

sponse module for defending against attacks and giving responses. The modular archi-

tecture and system processing flow are shown in Figure 2.

Fig. 2. mKIPS modular architecture and system processing flow

As a network packet enters the system, the kernel invokes the Manager module to

begin the packet inspection flow. It then executes the function component (i.e., detect())

of the Detection module to detect attacks through the invocation of the function pointer

(i.e., *detectFP()). The Detection module manages the rule database that stores detec-

tion rules and compares the packet payload with the detection rules. When an attack is

detected, it will call the function component (i.e., response()) of the Response module

to respond to attacks through the invocation of function pointer (i.e., *responseFP()). It

will then call the corresponding response method to deal with the attack according to

the type of attack. Finally, the control returns to the kernel’s original packet handling

flow to continue subsequent processing.

3.3 Detection Module and Detection Rules

The Detection module implements misuse detection and uses the detection rules in the

signature database for threat detection. It compares the payload of the network packet

with the attack signature database to determine the type of external attack. Our detection

rules are derived from Snort[6]. After converting Snort’s detection rules into our dedi-

cated detection rule format, these rules are imported to construct all the AC Trees used

for threat detection when the mKIPS system is initialized. The Detection module uses

Manager Module Detection Module Response Module

Packets

Enter
Copy Packet

*detectFP()

Packets

Leave

detect()

*responseFP() response()detect_empty()

response_empty()

Function Body Function Pointer

Packet flow if supply module is inserted Packet flow if supply module is not inserted

7

the AC-BM algorithm [22] for fast string comparison, which combines the advantages

of the Boyer-Moore [23] and Aho-Corasick [24] string comparison algorithms.

The mKIPS-specific rule format is shown in Figure 3. Each rule includes the re-

sponse method, transport layer protocol type, TCP/IP information, warning message,

and attack string. The design of the attack signature database built based on this is

shown in Figure 4. The attack signature database is constructed as rule trees, and the

corresponding rule tree is established according to the type of transport layer protocol.

Each rule tree comprises a TCP/IP Tree Node containing TCP/IP information and sev-

eral Rule Tree Nodes consisting of a response mechanism, warning message, and attack

string, as shown in Figure 5.

Fig. 3. The mKIPS-specific rule format.

Fig. 4. The structure of the attack signature database.

(a) TCP/IP Tree Node data structure

(b) Rule Tree Node data structure

Fig. 5. The structure of TCPIP Tree Node and Rule Tree Node

The TCP/IP Tree Node structure shown in Figure 5(a) is composed of several SIP

(Source IP), Sport (Source Port), DIP (Destination IP), and DPort (Destination Port).

SIP 1

DIP 1

SPort 1

DPort 1

DIP 2

DPort 2 …

…

DPort 3 …

DIP 3

SPort 2

DPort 4 …

…

… SPort 3

DIP 4

DPort 5

SIP 2 …

…

…

…

Rule Tree

Node 1

Rule Tree

Node 2

Rule Tree

Node 3

Rule Tree

Node 4

Rule Tree

Node 5
…

AC Node Rule Node 1 Rule Node 2 …AC Tree

0;t;src_ip:any;src_port:any;dst_ip:any;dst_port:any;msg:Attack!!;content:rm –rf /

Rule Response Method

Transport Layer Protocol Type

TCP/IP Information

Warning Message

Attack String

Rule Base

Header

…

TCPIP

Tree Node

Rule Tree

Node

Rule Tree

Node

Rule Base

Header

…

TCPIP

Tree Node

Rule Tree

Node

Rule Tree

Node

…

8

The SIP will point to the SIP node on the right, the SPort node on the lower layer, and

so on. The DPort at the end will point to the right DPort node and the Rule Tree Node

that matches the TCP/IP information.

Figure 5(b) shows the Rule Tree Node structure consisting of an AC Node and sev-

eral Rule Nodes. The AC Node records the number of Rule Nodes and points to the AC

Tree jointly constructed by all Rule Nodes. Moreover, each Rule Node records the re-

sponse mechanism, warning message, and attack string in a single rule.

When the Detection module examines a packet, it will start visiting from the corre-

sponding rule tree according to the TCP/IP information of the packet. First, it will visit

SIP, SPort, DIP, and DPort in the TCP/IP Tree Node. Then, the AC-BM algorithm is

executed to search for attack strings by comparing the packet payload with the AC Tree

of Rule Tree Nodes conforming to that TCP/IP Node.

3.4 Response Module and Reaction Mechanisms

When the Detection module detects a malicious packet, it will record the matching Rule

Node and send it to the Response module to execute the response mechanism. The re-

sponse mechanism that conforms to the rule is recorded in the Rule Node.

The data structure of the response mechanism is shown in Figure 6, and each re-

sponse method occupies 1 bit as a switch. Four response methods are implemented:

Alert (display warning message), Drop (discard packet), Reset Connection (interrupt

the TCP/IP connection between the attacking end and the receiving end), and Logfile

(record threat information). This design allows administrators to combine response

mechanisms to form the required response mechanism for different detection rules. For

example, the administrator can set the response mechanisms for a specific rule as Reset

Connection and Logfile. The Unused bits are reserved for future expansion.

Fig. 6. Response mechanisms

3.5 Receive Packet Steering (RPS) Enabling

In addition to the lightweight and modular design, to allow the system to maintain sta-

bility and high performance when the network traffic is heavy, we study the Linux ker-

nel’s handling of network packets and utilize mechanisms to distribute packets to dif-

ferent cores for processing under a multicore system. For example, the administrator

must correctly set the IRQ affinity setting to dispatch network packets to different cores

to fully utilize the multicores performance under Linux.

Receive Packet Steering (RPS) [12-14] is a technology the Linux kernel selects for

subsequent processing when Softirq is triggered. Since low-level NICs usually do not

implement the function of hardware distribution of packets, resulting in the perfor-

mance bottleneck problem of centralized processing of packets on a single core. There-

fore, the Linux kernel triggers Softirq in the final stage of top-half interrupt execution

Reset

Connection
Drop AlertLogfileUnusedUnusedUnusedUnused

8 Bits

9

and distributes packets to different cores for processing. RPS bases on the NIC queues

to set the affinity setting that can trigger Softirq on a specific core. The default setting

does not turn on the RPS, that is, to prioritize triggering Softirq on the local core. There-

fore, we use RPS to distribute packets to different cores for processing through software

and hardware setting so that the loading of each core can be balanced as much as pos-

sible to make the most use of multicore system performance.

4 Experimental Results

This section evaluates the system performance of the proposed kernel-level IDPS

named mKIPS and compares the effectiveness of the experimental system using mKIPS

and user-level IDPS (i.e., Snort[6]).

4.1 Experimental Environment

In order to measure the impact of IDPS on system performance, this research takes the

native system without IDPS as the base system and compares the performance of run-

ning the Web server in three system environments, including the base system, the sys-

tem runs Snort IDPS, and the system runs the mKIPS IDPS. The same detection rules

(i.e., snortrules-snapshot-2983) are used to compare the performance fairly. A total of

5432 rules are selected, each containing only one attack string for detection.

In the experimental environment we constructed, a server provides Web services,

and an IDPS running on another machine operates in bridge mode and is connected to

the router and the Web server. The client’s request to the Web server will be sent to

IDPS first and then forwarded to the Web server after being examined by IDPS. Like-

wise, the Web server’s response to the client will also be sent to IDPS first and then

forwarded to the client after being examined by IDPS. Five clients were used to gener-

ate a large number of requests to the Web server to obtain Web data for measuring the

system performance. As more packets are received or sent by the Web server, more

packets are inspected by IDPS. Therefore, IDPS’s performance does affect system per-

formance. The detailed software and hardware specifications are shown in Table 1.

Table 1. Software and hardware specifications of the experimental environment

 Clients Web Server IDPS

Processor Intel i5-3470 3.2GHz
Intel i7 -7700 3.6GHz

4C8T

Intel i7-9700 3GHz

8C8T

Memory
Kingston 2G DDR3-

1333 * 2

Kingston 16G DDR4-

2666 * 2

Kingston 16G DDR4-

2666 * 2

NIC RTL8111/8168/8411 I219V EXPI9301CTBLK * 2

OS
Ubuntu Server 18.04.1

LTS

Ubuntu Server

18.04.1 LTS

Ubuntu Server 18.04.1

LTS

Kernel Linux Kernel 4.15.0 Linux Kernel 4.15.0 Linux Kernel 4.15.0

Benchmark ApacheBench 2.3 - -

Web Server - Apache 2.4.29 [26] -

IDPS mKIPS / Snort 2.9.15.1

10

ApacheBench [25] is a performance testing tool measuring Web server performance.

Each client used ApacheBench during the experiment to measure the Web server per-

formance by sending 100,000 requests with 1,000 concurrent connections. A total of

5,000 concurrent connections and 500,000 requests were sent. Each experiment was

tested ten times, and the average value was calculated.

4.2 Experimental Results

We first measured the Softirq distribution for sending and receiving packets under dif-

ferent RPS settings. The default setting is off RPS. Table 2 shows that in the experi-

mental environment, with the default off RPS setting, sending and receiving packets

are wholly concentrated on Core 5 to trigger Softirq. After using the RPS technology,

sending and receiving packets can be effectively distributed to each core for processing.

Table 2. Softirq distribution for sending and receiving packets under different RPS settings.

RPS Configuration

Default (Disable) RPS Enable

Core 0 0 896168

Core 1 0 880016

Core 2 0 880984

Core 3 0 893637

Core 4 0 894027

Core 5 6802114 890352

Core 6 0 882078

Core 7 0 904947

Total 6802114 7122207

We then measured system performance under different RPS settings. The experi-

mental results of the transfer rate measurement are shown in Figure 7. The results show

that using the RPS mechanism can solve the performance bottleneck problem. When

RPS is not enabled, due to inspecting each packet for threat detection, mKIPS will cause

52.73-53.35% performance loss compared with the base system. The base system

stands for the native Linux system without running any IDPS. When RPS is turned on,

since sending and receiving packets can be effectively distributed to each core for pro-

cessing, system performance with running mKIPS can be significantly improved. Be-

sides, in the bridging environment, the sending and receiving of packets between the

Web server and clients for IDPS are to receive and then send packets, and the kernel of

the IDPS simply forwards packets. Running mKIPS will not significantly affect the

overall system performance when the RPS setting is enabled.

The experimental results of the detection rate measurement in Figure 8 show that

even if the RPS setting is turned on, the user-level Snort still cannot perform packet

detection well under such heavy network traffic, and the packet drop rate reaches 66.44-

69%. Whereas the kernel-level mKIPS can have a very high detection rate and perfor-

mance. Therefore, it can effectively utilize the function of IDPS to protect the system.

11

Fig. 7. Transfer rate comparison. Fig. 8. Packet analyzed rate comparison.

5 Conclusions

We have designed and implemented a lightweight modular kernel-level IDPS named

mKIPS. It adopts signature-based detection, inspecting each network packet to find

malicious patterns in known attacks. mKIPS is implemented as a loadable kernel mod-

ule that can be dynamically loaded into the Linux kernel during run time. Its modular

architecture can support dynamic addition/deletion/replacement of functional compo-

nents. Its implementation employs the netfilter framework, and all packets entering or

leaving the system can be examined with in-place packet inspection. Furthermore, this

work distributes packets to different cores for processing through software and hard-

ware setting to make the most use of multicore performance.

Compared with user-level IDPS, mKIPS operating in the kernel can detect threats

immediately after receiving packets. It needs not the overhead of copying packets to

the user buffer for inspection. Furthermore, it does not need to wait for the scheduling

to execute user-level IDPS and switch the protection domain back and forth between

kernel mode and user mode for processing. These significantly reduce the impact on

system performance. Experimental results show that mKIPS incurs less overhead on

system performance and effectively ensures system safety with a high detection rate.

References

1. H. J Liao, C. H. R. Lin, Y. C. Lin, and K. Y. Tung, “Intrusion detection system: a compre-

hensive review,” Journal of Network and Computer Applications, Vol. 36, Issue 1, 2013,

pp. 16-24.

2. A. Patel, M. Taghavi, K. Bakhtiyari, and J. C. Júnior, “An intrusion detection and prevention

system in cloud computing: A systematic review,” Journal of Network and Computer Ap-

plications, Vol. 36, Issue 1, 2013, pp. 25-41.

3. C. Modi, D. Patel, H. Patel, B. Borisaniya, A. Patel, and M. Rajarajan, “A survey of intrusion

detection techniques in Cloud,” Journal of Network and Computer Applications, Vol. 36,

Issue 1, pp. 42-57, 2013.

4. U. Kumar and B. N. Gohil, “A Survey on Intrusion Detection Systems for Cloud Computing

Environment,” International Journal of Computer Applications, Vol. 109, No. 1, pp. 6-15,

2015.

12

5. J. D. Araújo and Z. Abdelouahab, “Virtualization in Intrusion Detection Systems: A Study

on Different Approaches for Cloud Computing Environments,” International Journal of

Computer Science and Network Security, Vol.13, No.11, pp. 135-142, 2013.

6. Snort, https://www.snort.org, last accessed 2023/04/30.

7. Suricata, https://suricata-ids.org, last accessed 2023/04/30.

8. M. L. Chiang, J. K. Wang, L. C. Feng, Y. S. Chen, Y. C. Wang, and W. Y. Kao, “Design

and Implementation of a Lightweight Kernel Level Network Intrusion Prevention System

for Virtualized Environment,” 13th International Conference on Information Security Prac-

tice and Experience, 13-15 Dec, 2017, Melbourne, Australia, Dec. 2017.

9. T. Chin, K. Xiong, and M. Rahouti, “Kernel-Space Intrusion Detection Using Software-

Defined Networking,” Security and Safety, 5(15):pp. 155-168, Jul. 2018.

10. T. H. Cheng, Y. D. Lin, Y. C. Lai, and P. C. Lin, “Evasion Techniques: Sneaking through

Your Intrusion Detection/Prevention Systems,” IEEE Communications Surveys and Tutori-

als, Vol. 14, No. 4, pp. 1011-1020, 2012.

11. The Linux Kernel Archives, http://www.kernel.org, last accessed 2023/04/30.

12. Linux Network Scaling: Receiving Packets, https://garycplin.blogspot.com/2017/06/linux-

network-scaling-receives-packets.html, last accessed 2023/04/30.

13. Scaling in the Linux Networking Stack, https://www.kernel.org/doc/Documentation/net-

working/scaling.txt, last accessed 2023/04/30.

14. Performance Tuning Guide, https://access.redhat.com/documentation/en-us/red_hat_enter-

prise_linux/6/html/performance_tuning_guide/index, last accessed 2023/04/30.

15. libpcap, https://www.tcpdump.org, last accessed 2023/04/30.

16. Cisco Talos Intelligence Group, https://www.talosintelligence.com, last accessed

2023/04/30.

17. R. T. Gaddam and M. Nandhini, “Analysis of Various Intrusion Detection Systems with a

Model for Improving Snort Performance,” Indian Journal of Science and Technology, Vol

10(20), DOI: 10.17485/ijst/2017/v10i20/108940, May 2017.

18. W. Yuan, J. Tan, and P. D. Le, “Distributed Snort Network Intrusion Detection System with

Load Balancing Approach,” Proceedings of the International Conference on Security and

Management (SAM), Athens, 2013.

19. S. A. R. Shah and B. Issac, “Performance comparison of intrusion detection systems and

application of machine learning to Snort system,” Future Generation Computer Systems,

Vol. 80, pp. 157-170, Mar. 2018.

20. S. Shah and S. P. Bendale, “An Intuitive Study: Intrusion Detection Systems and Anomalies,

How AI can be used as a tool to enable the majority, in 5G era,” 2019 5th International

Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune,

India, Sept. 19-21, 2019, pp. 1-8, doi: 10.1109/ICCUBEA47591.2019.9128786.

21. Netfilter, https://www.netfilter.org, last accessed 2023/04/30.

22. C. J. Coit, S. Staniford, and J. McAlemey, “Towards faster string matching for intrusion

detection or exceeding the speed of Snort,” in Proceedings of DARPA Information Surviv-

ability Conference & Exposition II, Vol. 1, 2001, pp. 367-373.

23. R. S. Boyer and J S. Moore, “A fast string searching algorithm,” Communications of the

ACM, Vol. 20, No. 10, Oct. 1977, pp.762-772.

24. A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to bibliographic search,”

Communications of ACM, Vol. 18, No. 6, June 1975, pp. 333-340.

25. ApacheBench, https://httpd.apache.org/docs/2.4/programs/ab.html, last accessed

2023/04/30.

26. Apache Server, https://httpd.apache.org, last accessed 2023/04/30.

