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Abstract. Histology image annotation is costly and time-consuming.
Utilizing Positive and Unlabeled (PU) data for model training offers a
more resource-efficient alternative. However, previous methods for PU
learning suffer from the noise arising from label assignment to unlabeled
data. We observe that predictions on noisy data lack consistency under
data augmentation. In this paper, we present Field of View (FoV) con-
sistency regularization for PU segmentation in histology images, which
effectively reduces the noise influence by promoting consistent predic-
tions across varying FoVs. Using only 20% of positive labels on the Glas
Dataset, our approach outperforms previous methods, achieving a Dice
score of 90.69%—almost reaching the fully supervised result of 93.30%.
Source code is available at: https://github.com/lzaya/PU_with_FoV.

Keywords: Histology Image Segmentation, PU Learning, FoV Consis-
tency Regularization

1 Introduction

The advancement of digital pathology in clinical diagnostics has led to an in-
creasing demand for histology image analysis. Deep learning-based segmentation
algorithms, such as fully convolutional networks, have achieved remarkable ac-
curacy and efficiency in histology image analysis, fostering progress in disease
diagnosis, treatment, and research [I8]. However, model training depends on
extensive fully annotated data, and the high costs associated with medical im-
age labeling pose challenges in this field. Positive-Unlabeled (PU) data, a weakly
labeled dataset type, can help alleviate annotation efforts in histology image seg-
mentation scenarios. It consists of a subset of positive examples (i.e., instances
of the class of interest) and unlabeled examples (i.e., instances not labeled as
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(a) Input image (b) Ground truth (c) Baseline (d) Fov

Fig. 1. Comparison of prediction results with and without data augmentation, using
FoV disturbance as the augmentation method. (a) The original input image. (b) The
ground truth. (¢) The prediction without data augmentation. (d) The prediction with
data augmentation. The inconsistency between (c) and (d) indicates areas where the
model fails to accurately predict.

either positive or negative). Due to the large size and heterogeneity of histology
images, identifying specific structures and abnormal tissues may be prone to
omissions [3], leading to a situation where only a portion of positive examples is
labeled, and the problem can be addressed as a PU learning problem.

Two main approaches exist for handling positive and labeled data [I]. The
first identifies reliable positive or negative instances within unlabeled data to
expand the labeled set. The second treats all unlabeled data as weighted nega-
tive samples. Both methods, however, cannot prevent introducing noise, such as
misidentification in the first approach or positive cases within unlabeled data in
the second. This noise can lead to performance decline when the model overfits
to these inaccurate data points [19].

We observe that predictions of noisy data points are inconsistent under data
augmentation, as illustrated in To address this issue, we apply consis-
tency regularization to PU learning, a strategy commonly employed in weakly-
supervised learning [2[9/T2I22]. Moreover, we consider the importance of Field
of View (FoV) in histology image analysis. Small FoV patches provide cellular-
level details, while large FoV images offer more global information. Many multi-
magnification studies [8II7] combine pixel-aligned feature maps across different
FoVs to enrich representation. The underlying principle of these studies is that
semantic information should be consistent under different FoVs. For example,
when zoomed in (i.e., small FoV) or out (i.e., large FoV), the same object retains
the same essential information. However, this aspect is not explicitly addressed
in previous work. Therefore, we introduce FoV consistency regularization to
enhance the performance of PU learning for histology image semantic segmenta-
tion. Specifically, we divide the entire input image (i.e., large FoV) into several
patches (i.e., small FoV) and regularize the prediction of the whole input and
the reassembled prediction of these patches. To evaluate our method, we con-
duct experiments on the Glas dataset and consider a setting where the ratio
of unlabeled/all positives is controllable. We average metrics over the last 10
epochs to assess our method since a clean validation set is unavailable in PU
learning. Full labels are not accessible during training but are available for per-
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formance verification. Our results demonstrate that consistency regularization
can mitigate noise impact. For example, when the ratio of unlabeled/all posi-
tives is 80%, adding consistency loss to nnPU [10] can improve the Dice score
by 1.70% to 6.58%, and our FoV consistency regularization outperforms other
popular regularization methods based on data augmentation.

Our contributions are summarized as follows: 1) First, we empirically demon-
strate that consistency regularization can reduce the inevitable noise impact in
PU learning. 2) Second, We introduce a new regularization method called FoV
consistency to improve the performance of PU learning in histology image seg-
mentation, leveraging the semantic invariance across different FoVs of the same
input. 3) Finally, on the Glas dataset, even with only 20% positive labels, our
method achieves a competitive result with a Dice score of 90.69%, approaching
the fully supervised result of 93.30%.

2 Related Work

2.1 PU Learning

PU learning aims to train a binary classifier using a dataset containing only
positive and unlabeled (PU) samples, without labeled negatives. The primary
challenge in PU learning is handling the unlabeled data. Two main approaches
address this issue. The first approach, known as the two-step technique [7U14],
seeks to expand the labeled set by identifying unlabeled data points likely to be
negative or positive and using them to train the model. However, incorrect iden-
tification in this approach can cause the model to overfit on noisy data points,
leading to performance degradation [I9/13]. The second approach [BIT0I2T] treats
all unlabeled data as negative samples and accounts for the presence of noise (i.e.,
positive data) within them. Nonetheless, this approach is also vulnerable to noisy
data and may result in suboptimal performance.

2.2 Consistency Regularization

Consistency regularization enforces consistent predictive results under various
disturbances, improving the network’s generalization capability. It can be applied
as a form of supervision without requiring additional manual annotations. Pre-
vious studies have demonstrated the effectiveness of consistency regularization
in scenarios with limited labeled data, such as weakly-supervised learning. For
example, [12] enforces output consistency across multi-scales to achieve more ac-
curate predictions under noisy labels. [22] utilizes cutout consistency to penalize
inconsistent segmentation results. Recently, [9] proposes Puzzle-CAM to identify
the most integrated pseudo-labels in weakly-supervised semantic segmentation
by encouraging consistency between features from separate local patches and the
entire image. In contrast, our FoV consistency regularization technique aims to
prevent PU learning models from overfitting to noise that arises when assigning
labels to unlabeled data.
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3 Method

3.1 Review of PU Segmentation

Our method focuses on Positive-Unlabeled learning for binary segmentation
tasks (PU segmentation). In a PU dataset D = (2,8, i)y, T;i € RHXWx3
represents the i-th image instance, s; € {0, 1}*W indicates the positive pixels
selected for labeling in z;, and y; € {0,1}7*W is the true label, which is un-
available. In the binary mask s;, s/ represents the labeling status of a pixel p;
in x;. Specifically, sZ = 1 indicates p; is a positive pixel, while si- = ( signifies
p; is an unlabeled pixel that could belong to either class.

PU segmentation aims to learn a mapping function f(-;0) from PU data by
minimizing empirical risk nbin R(f) = Ep[L(f(x;0),y)], where L is a loss func-

tion. Since only part of the positive examples is known, computing empirical
risk is challenging. One solution is to relabel the unlabeled data, thereby con-
structing negative sample sets D,, and positive sample sets D,. Subsequently,
we minimize the approximated empirical risk on the relabeled data, given by:

win Ep, (L(f(2:0),0)) + Bp, (L(f(;0), 1)) (1)

However, this approach overlooks noise in D,, and D,, due to incorrect rela-
beling, potentially causing overfitting and reduced performance. We note that
predictions on noisy data points often lack consistency when subjected to data
augmentation. To address this, we add a consistency regularization to the opti-
mization function. Consequently, our empirical risk can be expressed as:

m@in EDn(L(f(x; 9)7 0)) + ED,, (L(f(m7 9)7 1)) + )‘QD(-T; 9)) (2)

where 2p(x; 0) is the regularization term, and A is a weighting factor controlling
regularization strength. By enforcing consistency on predictions for noisy data
points, we enhance the model’s robustness and generalization performance.

3.2 Field of View Consistency

The concept of Field of View (FoV) consistency is inspired by multi-magnification
research in histology image analysis. Whole Slide Images (WSIs) are typically too
large for direct GPU processing and must be divided into smaller patches for
training Convolutional Neural Networks (CNNs). Basic patch-based methods
utilize only a single FoV of the input image, whereas multi-magnification ap-
proaches integrate representations from multiple FoVs. This process mirrors the
way pathologists examine WSIs by zooming in and out to study tissues at various
magnifications. They observe details of individual cells at smaller FoVs with high
magnification and their surroundings at larger FoVs with low magnification. By
incorporating representations from different FoVs, multi-magnification studies
enhance input features and yield improved results. The underlying principle is
that semantic information remains invariant across various FoVs. In this paper,
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we explicitly regularize this invariance by designing a consistency regularization
term. This loss can be flexibly applied to histology images and other domains
that necessitate multi-scale processing.

To implement this consistency regularization term, we divide the input im-
ages into smaller patches and feed each patch into the network separately. Then,
we merge the results back together to obtain the reassembled prediction at its
original size. In our experiment, we divide the image z; into 4 non-overlapping
patches {zf}_  aF € R% %3 The consistency loss can be formulated as:

2(w;0) = Z 1f (2330) — merge{ f (75 0) izl 3)

where f(z;) is the prediction of the full image and f(x%) is the prediction of the
j-th patch. The merge operation combines the predictions of the four patches to
reconstruct the full image prediction, as shown in (d) of Figure The consistency
loss encourages the predictions of both patches and the full image to be consistent
with each other. This helps to ensure that the semantic information is invariant
across different FoVs.

3.3 A Simple Two-step Method

To assess the effectiveness of the FoV consistency regularization, we design a
simple two-step method for PU learning, which we refer to as probability thresh-
olding.

In the first step, our objective is to augment the labeled dataset by choosing
reliable negative and positive samples based on the model’s output. A probability
thresholding strategy is employed to ensure the reliability of unlabeled data.
Specifically, we classify unlabeled examples as reliable negatives or positives
according to their sigmoid probabilities. Examples with probabilities less than
0.5 are considered reliable negatives, while those greater than 0.8 are deemed
reliable positives. This simple and intuitive step selects reliable examples for the
second step.

During the second step, we employ the relabeled data and labeled positive
data to refine the model using the sigmoid activation function and binary cross-
entropy loss function.

4 Experiment

4.1 Experimental Setup

Dataset: We perform PU segmentation experiments on the Gland Segmenta-
tion in Colon Histology Images (GlaS) Dataset [15], containing 165 images from
16 H&E stained T3/T4 colorectal adenocarcinoma histological sections. The
dataset is split into 85 training images (37 benign and 48 malignant cases) and
80 test images (37 benign and 43 malignant cases), following the protocol of [I5].
We manually corrupt the original GlaS dataset labels to create a PU dataset by
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randomly assigning connected positive annotation components to the unlabeled
class. We also evaluate our method’s performance by varying the ratio (1) of
unlabeled/all positives to 20%, 50%, and 80%.
Baseline: We use three PU learning methods as baselines, including uPU [5],
nnPU [10], and probability thresholding. Both uPU and nnPU treat unlabeled
examples as negative and assume the positive class prior probability , is known.
In the GlaS dataset, 7, = 0.45.

We compare FoV with three data augmentation techniques for consistency
regularization, including;:

— Scale: Adjust the input image size by downscaling by 0.5 or upscaling by
1.5.

— Cutout [4]: Randomly erase a square region of each input image during
training, with an area not exceeding 256 x 256 pixels.

— Rotation: Rotate the input image by angles of v - 90, with v € 1,2, 3.

Evaluation Metrics: We evaluate segmentation performance using Intersec-
tion over Union (IoU) and Dice coefficient (Dice), both averaged over the last
10 epochs, following the evaluation methods in [16]. Prior research [6] has shown
that training with corrupted labels can cause unstable training, leading to con-
siderable performance fluctuations. Thus, we calculate the average of the seg-
mentation metrics across the final 10 epochs for a more reliable performance
estimate.

Implementation Details: In our experiments, we preprocess each image by
resizing it to 512 x 512 pixels. We use the state-of-the-art transformer-based
segmentation algorithm Segformer [20] as our backbone model and initialize it
with pre-trained weights from the CityScapes dataset. The model is trained using
the AdamW optimizer, with a learning rate of le-4. Following [I1], we set X as a
Gaussian ramp-up curve. Each experiment has a batch size of 8 and runs for 100
epochs. We conduct our experiments on a single NVIDIA Quadro A8000 GPU
using the PyTorch library.

4.2 Segmentation performance

The results of our experimental comparisons are presented in Table [I which
demonstrate the performance of three PU learning methods as well as the upper
bound (i.e., the model trained with clean labels). We conduct a comprehensive
comparison between our method and other popular consistency regularization
methods based on disturbances. Our results indicate that integrating consistency
regularization leads to improved performance relative to the baseline. Moreover,
the results suggest that the FoV consistency regularization outperforms other
methods, particularly when the ratio 5 of unlabeled/all positives is high. For
instance, when 7 is 80%, our FoV method achieves a Dice score of 90.69%,
which closely approaches the upper bound result of 93.32%. To further illustrate
the superiority of the FoV method, we provide representative segmentation re-
sults in using the probability thresholding baseline. These results con-
firm the superior qualitative performance of the FoV consistency regularization.
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Baseline Consistency‘ -80% 150% 1-20%
method method ‘ Dice (%) ToU (%) ‘ Dice (%) ToU (%) ‘ Dice (%) ToU (%)
N/A 43.37 £ 8.24 3247 £ 7.17 | 7412 £ 230 61.37 £ 2.96 | 89.78 £ 1.27 82.49 £ 1.87
Scale 42,55 +£9.23 3447 £8.23 | 85.15 + 1.75 76.08 £ 2.25 | 92.00 £ 0.40 85.94 £ 0.61
ubPU Cutout 39.94 + 6.23 29.74 & 4.97 | 75.88 £ 2.76 65.34 + 3.27 |92.32 + 0.79 86.50 £+ 1.19
(known m,)  Rotation |54.46 + 10.84 44.27 + 10.68/85.65 + 2.69 76.69 + 3.46 91.92 & 0.77 85.83 + 1.20
FoV 42.06 + 6.62  33.59 £ 5.81 | 80.70 + 4.25 71.48 £+ 4.81 | 92.04 + 0.82 86.15 £ 1.20
N/A 82.94 + 3.12 72.52 + 3.82 | 87.62 £ 1.78 78.75 + 2.59 | 85.80 &£ 1.00 75.77 £ 1.47
Scale 86.96 + 2.43 78.40 £ 2.92 | 90.32 £ 0.44 82.89 £ 0.74 | 86.40 = 1.06 76.53 £ 1.64
nnPU Cutout 84.64 + 1.70 75.91 = 1.97 |90.97 £+ 1.35 84.09 + 1.93|89.27 + 0.40 81.15 + 0.64
(known m,)  Rotation | 88.20 &+ 0.74  79.87 & 1.15 | 88.04 & 0.51 80.23 & 0.84 | 86.52 + 0.30 76.73 % 0.47
FoV 89.52 + 0.67 81.81 + 1.07 | 90.38 4 0.52 83.02 + 0.84 | 87.84 &+ 0.56 78.81 + 0.90
N/A 44.24 +£9.95 33.92 £8.59 | 87.84 £ 2.20 79.66 £ 3.05 | 91.15 £ 0.54 84.45 £ 0.84
Probability Scale 89.55 + 0.60  81.98 = 0.90 | 90.61 &+ 0.56 83.44 + 0.85 | 89.95 + 0.46 82.30 + 0.77
thresholding ~ Cutout | 87.17 £ 099  79.24 & 142 |92.56 + 0.21 86.61 + 0.3691.87 + 0.18 85.46 + 0.31
(unknown m,) Rotation | 90.26 &£ 098  83.15+£1.30 | 9L55 4 0.32 8497 + 0.53 | 88.94 + 0.26 81.74 + 0.43
FoV 90.69 + 0.64 83.86 + 0.96 | 89.44 4+ 0.36 82.64 £ 0.61 | 91.29 4+ 0.53 84.58 £ 0.72

Upper bound ‘ Dice = 93.32 £ 0.17 %; IoU = 88.03 £ 0.26 %

Table 1. Segmentation performance of PU learning methods with different consistency
regularization techniques for different 7. The best result is indicated with bold text,
while the second-best result is underlined. N/A denotes Not Applicable, indicating that
the baseline method is employed without any consistency regularization technique.

Additionally, shows the test Dice score curves for each regularization
method across all epochs. Although the numerical differences among the meth-
ods are relatively small, the curve graphs reveal that our method offers more
stable performance. The consistent performance of our method throughout the
training process emphasizes the effectiveness of FoV consistency regularization
in handling noise and achieving robust, accurate segmentation results.

However, we emphasize that the performance of PU segmentation is strongly
influenced by the choice of consistency regularization technique. While the FoV
method outperforms other techniques in some cases, there are scenarios in which
Cutout or Rotation yield better results, such as when 7 is 50%. This suggests
the importance of selecting the most appropriate consistency regularization tech-
nique, tailored to the specific dataset and task at hand.

5 Conclusion

In this paper, our study investigate the effectiveness of consistency regulariza-
tion for PU segmentation in histology images. Our experiments demonstrate that
the choice of consistency regularization technique strongly influences the perfor-
mance of PU segmentation, and the most suitable method should be tailored to
the specific dataset and task. Additionally, our proposed Field of View (FoV)
consistency regularization achieve the best results in scenarios with high ratio of
unlabeled positives. The results also demonstrate the stability of our method’s
performance, indicating its ability to handle noisy data and achieve robust and
accurate segmentation results. Our findings provide insights into the selection of
appropriate consistency regularization techniques for PU learning in histology
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Test image Ground Truth Baseline + Scale + Cutout + Rotation + FoV (ours)

Fig. 2. Comparison of segmentation results when the ratio n of unlabeled positives is
80%.

— Baseline

—— Baseline+Scale

— Baseline+Cutout
Baseline+Rotation 80

90 —— Baseline+FoV (ours)

—— Baseline
—— Baseline+Scale
—— Baseline+Cutout
Baseline+Rotation
—— Baseline+FoV (ours)

0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

(a) nnPU (b) Probability thresholding

Fig. 3. Test dice score curves for each method across all epochs when the ratio n
of unlabeled positives is 80%. The curves demonstrate the stability of each method’s
performance over time.

image segmentation, which could have significant implications for improving the
performance of segmentation models in real-world clinical applications.
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