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Abstract. PET/CT is the preferred device for lung cancer and lymph node me-

tastasis diagnosis, and mining effective features from PET/CT images to identify 

lung lymph node metastasis has important research significance and application 

value. Multi-phase PET/CT has temporal properties that can better represent 

changes in lesions’ structural and metabolic properties. Early-phase PET images 

can show a wide range of lesion areas. Delayed-phase PET images can show the 

high uptake properties of 18F-FDG in malignant tumor cells. Thus, multi-phase 

PET represents the variability of benign/malignant lesions better in the temporal 

dimension. This paper first proposes a metabolic enhancement method for lung 

lymph nodes and their microenvironment, a lymph node metastasis recognition 

network (LNMER-Net). The network has three branches: multi-modal early-

phase feature fusion channel, multi-modal delayed-phase feature fusion channel, 

and single-modal metabolic decay channel. To enhance the feature of the lymph 

node region, a multi-receptive field-based feature extraction and feature space 

optimization (MRFO) method is proposed to extract lymph node features by 

multi-scale convolution operations and embed them in the multi-modal fusion 

channel. To exploit the information on the metabolic changes of the lesion in the 

early-phase and delayed-phase, differential results of the multi-phase PET im-

ages are fed into the single-modal metabolic decay channel to enhance the mi-

croenvironmental features. To verify its effectiveness, a multi-phase PET/CT da-

taset from China Medical University is used. The proposed method achieves 

84.5%/82.9% in Accuracy/Recall, which is better than SOTA methods such as 

Res2Net, Comformer, and NextViT. 

Keywords: Lung lymph node metastasis recognition, Metabolic enhancement, 

Multi-phase PET/CT, Feature optimization. 
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1 Introduction 

Lung cancer is one of the most common malignancies worldwide and has a high mor-

tality rate among cancers [1]. Cancer can metastasize to nearby lymph nodes, tissues, 

organs, and other parts of the body, and metastasis is a common cause of death from 

cancer [2,3]. Early detection of lung lymph nodes and rapid identification of their be-

nign and malignant nature is crucial for patient survival [4]. Currently, in clinical prac-

tice, Computed Tomography (CT) and Positron Emission Tomography (PET) are im-

portant and advanced imaging tools for the diagnosis of cancer. CT imaging extracts 

detailed anatomical high-resolution information, and PET imaging extracts metabolic 

and functional information about organs [5]. Due to the variable signs and small diam-

eter of lung lymph nodes [6], they are more disturbed by other normal tissues. Moreo-

ver, the amount of slice data obtained from PET and CT is huge, and it is time-consum-

ing and difficult to ensure that small nodes are not missed if physicians directly analyze 

and identify the lesion areas in each slice [7]. Therefore, it is worthwhile to diagnose 

the lung lymph nodes accurately identified by computer based on PET/CT images. 

Currently, the existing classification algorithms related to lung lymph nodes and pul-

monary nodules can be divided into two main categories. One is based on traditional 

feature descriptors to extract shallow manual features to identify malignant and benign 

nodules; the other is to design various deep learning methods to extract deeper abstract 

semantic features of images for classification. The traditional methods extract features 

(including texture, shape, intensity, and morphological features) from nodules manu-

ally, reflecting the heterogeneity of nodules. Then feed the features into a classifier to 

predict the class of nodules. Many experimental results demonstrate that traditional 

methods can obtain good classification results [8-14]. 

Despite the popularity of handcrafted features for classification, many limitations 

remain. For example, handcrafted features cannot fully characterize heterogeneous lung 

lymph nodes, and it can be difficult to filter key features among the numerous feature 

information. Researchers have recently started utilizing convolutional neural networks 

(CNNs) for medical image tasks. Compared with traditional methods, CNNs are auto-

matic and adaptive models that learn highly discriminant features from various image 

data for classification, and omit feature design and other processes. Initially, Hua et al 

[15] showed that the classification of nodules in CT images using CNNs and deep con-

fidence networks (DBNs) both outperformed traditional methods. He et al [16] pro-

posed a deep residual network (ResNet), which introduced shortcut connections in deep 

learning models to alleviate the problem of excessive depth of neural networks. Huang 

et al [17] created dense convolutional networks (DenseNet) that can enhance feature 

propagation, generalize better, and prevent overfitting. Chen et al [18] proposed a dual 

path network (DPN) that incorporates ResNet, which focuses on feature reuse, and 

DenseNet, which focuses on feature generation. Gao et al [19] designed Res2net based 

on ResNet, which extracts global and local features of images more comprehensively 

and effectively through multi-receptive fields. In addition to CNNs, other neural net-

work structures have been used in image classification studies, and Vaswani et al [20] 

proposed the Transformer method that relies on an attention mechanism to accomplish 

the classification task. Peng et al [21] fused CNN and Transformer models and 
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proposed the first parallel hybrid network of the two, which combines the advantages 

of both and improves the classification effect without adding more computation. Li et 

al [22] designed a new hybrid model of CNN and Transformer, which model can 

achieve significant advantages in the classification task. 

At present, the above studies are mainly based on single-phase CT images, and the 

existing works lack multi-modal multi-phase studies. To make lung lymph node iden-

tification more accurate and efficient, this paper combines the advantages of multi-mo-

dality and multi-phase, digs deeper into the temporal information, and introduces met-

abolic decay information into the network to better assist the network in diagnosis. The 

contributions of this paper are mainly in the following three aspects: 

1. A novel model is proposed for multi-modal multi-phase data, involving three input 

channel branches, namely multi-modal early-phase feature fusion channel, multi-

modal delayed-phase feature fusion channel, and single-modal metabolic decay 

channel. 

2. A single-modal metabolic attenuation channel is proposed for PET images imaged 

using 18F-FDG as a tracer, which is the first current branch of application for tumor 

characterization of multi-phase PET images. 

3. A multi-receptive field-based feature extraction and feature space optimization 

method is designed, using convolutional blocks of multi-scales for feature extrac-

tion, and then filtering out the feature information that is more decisive for classifi-

cation after corresponding operations. 

2 Recognition of Lung Lymph Node Metastasis 

CT images contain textural information about the lesion area, and PET images with 18F-

FDG as a tracer have metabolic information. Early-phase imaging and delayed-phase 

imaging have a temporal relationship, and the PET images showing metabolic infor-

mation are significantly different. 

 

Fig. 1. Schematic diagram of lung lymph nodes in different cases. (a) The diagram shows an 

example of non-metastatic lymph nodes in lung lymph nodes (benign). (b) The diagram shows 

an example of metastatic lymph nodes in lung lymph nodes (malignant). (a)(b) Each row of both 

figures shows the lymph nodes area of different patients (Case1-4), and each column from left to 

right shows the early-phase CT image, delayed-phase CT image, early-phase PET image, de-

layed-phase PET image, and early-phase PET - delayed-phase PET difference image, respec-

tively, and the rectangular box indicates the lymph nodes area, blue is benign and red is malig-

nant. 
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The difference between the early-phase image and the delayed-phase image is ob-

tained as a differential image. Some of the lymph nodes are shown in Fig. 1. The dif-

ferent images visualize the metabolic differences in time series and show the microen-

vironmental information of metabolic decay. To better extract the lymph nodes and 

their surrounding features, this paper uses multi-modal multi-phase PET/CT images 

and multi-phase PET differential images. 

2.1 LNMER-Net 

To enhance the metabolic characteristics of lung lymph nodes and their microenviron-

ment, this paper proposes the LNMER-Net, a lymph node metastasis recognition net-

work model involving three channel branches. The network architecture is shown in 

Fig. 2 and is described as follows: 

 

Fig. 2. Architecture of metabolically enhanced lymph node metastasis recognition network based 

on lung lymph nodes and their microenvironment (LNMER-Net) 

 The first channel is called the multi-modal early-phase feature fusion channel, 

and the input of this channel is the fused image (IWB) of early-phase PET (PETWB) and 

early-phase CT (CTWB). At first, this branch extracts the underlying anatomical features 

by the multi-receptive field-based feature extraction and feature spatial optimization 

method (MRFO) proposed in this paper. The shape features and texture features are 

extracted using multi-scale convolution blocks, and the features are spatially optimized 

by the corresponding operations. Then the deep semantic features are extracted after 

residual blocks, and flattened after compressing features in pooling layers to obtain 

early-phase lymph node features, denoted as FWB.  
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 The second channel is the multi-modal delayed-phase feature fusion channel, and 

the input of this channel is the fused image (ID) of delayed-phase PET (PETD) and de-

layed-phase CT (CTD). Similar to the multi-modal early-phase feature fusion channel, 

the input is flattened after the MRFO block, residual block, and pooling layer to obtain 

the delayed-phase lymph node feature, which is noted as FD. 

 The third channel is a single-modal metabolic decay channel, where the input is 

the difference image (IWB-D) between the early-phase PET (PETWB) and the delayed-

phase PET (PETD), and the microenvironmental features are highlighted by metabolic 

decay. This metabolic decay branch focuses more on minute detail information, so 

MRFO containing multiple large convolutional blocks is not used. Structural features 

are extracted using a 7×7 convolution kernel, and deep semantic features are extracted 

using residual blocks, which are subsequently pooled and then flatten to obtain lymph 

node microenvironment features, denoted as FWB-D. The features FWB, FD, and FWB-D of 

the three channels are concatenated to obtain the region of interest enhancement fea-

tures, denoted as FAug. The cascade is augmented by setting learnable adaptive weights 

in the network for the three features. The weights of FWB and FD are λ and the weight 

of FWB-D is (1-λ). The FAug goes through the fully connected layer, resulting in the pre-

diction Pred1. The FWB-D alone goes through the fully connected layer, resulting in the 

prediction Pred2. 

In this paper, the base-stem networks of all three paths use ResNet50 [16], which is 

the mainstream model in current classification networks with a wide range of applica-

tions and strong applicability. However, its receptive field is small and the long-dis-

tance dependence of spatial pixels is lost. Therefore, this method improves the lung 

lymph node classification task to make the network achieve better results. 

2.2 Multi-receptive field-based feature extraction and feature space 

optimization method (MRFO) 

Compared with small convolution kernels, large convolution kernels have larger recep-

tive fields, and using large receptive fields has an irreplaceable effect compared to su-

perimposing multiple small receptive fields. There is a higher shape bias and a stronger 

dependence on the target shape using large receptive fields, and a stronger texture bias 

and a higher dependence on the image texture for small receptive fields [23]. CT images 

can show clear texture information and PET images can show metabolic range. For the 

complex features of PET/CT fusion image information, this paper designs a feature 

extraction and feature space optimization module based on multi-receptive fields, de-

noted as MRFO. The architecture diagram is shown in Fig. 3. 

The PET images (IPET) and CT images (ICT) are fused and inputted, and the image 

shape features and texture features are first extracted by a multi-receptive field-based 

feature extraction module, i.e., five convolutional blocks of different scales (C1-5) and 

a dilation convolution (DC). The large convolution kernel has a large effective field of 

perception, can examine the feature map of a wider area, and the obtained features have 

global characteristics and pay more attention to the shape features of the fused image; 

the small convolution kernel is less computationally intensive, less likely to ignore local 

features, and focuses on the image texture information. Using multi-scale receptive 
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fields, the original image is probed with multiple filters with complementary effective 

fields of view to obtain useful image contextual information at multiple scales, allowing 

feature extraction of regions of interest to ensure both shape features and texture fea-

tures. Then the feature information extracted by multi-scale convolution is concate-

nated to obtain the feature FC, as in Eq.s (1)-(3). 

 

Fig. 3. Multi-receptive field-based feature extraction and feature space optimization module 

(MRFO) architecture diagram 

The FC enters the feature space optimization module and performs the corresponding 

operations in the spatial dimension to extract the spatial relationship features. The FC 

is first convolved by 1×1 convolution (C1×1) to obtain feature FC1 and by 3×3 convolu-

tion (C3×3) to obtain feature FC2, respectively. Feature F2 is again convolved by 3×3 

transposition (TC3×3) to obtain feature FC3, as in Eq. (4). The FC2 is multiplied with the 

FC3 and then passed through Softmax and then multiplied with the difference between 

the FC1 and the FC2 to output feature Fout, as in Eq. (5). Among them, C1×1 serves to 

reduce the dimensionality and perform the convolution operation only in the channel 

direction to achieve the reduction of the number of channels and reduce the number of 

parameters without changing the other dimensional information. After C3×3, TC3×3 and 

their multiplication operations, the features are further extracted and the planar corre-

lation of the features is found at the same time. The difference operation is performed 

between the FC1 and the FC2 to find the different features and filter out the features that 

are more decisive for subsequent image recognition. The MRFO is calculated as fol-

lows: 

 𝐹𝐷 = 𝑃𝑚𝑎𝑥(𝜎(𝐵𝑁(𝐷𝐶(𝐼PET + 𝐼CT))))) (1) 

 𝐹𝑛 = 𝑃𝑚𝑎𝑥(𝜎(𝐵𝑁(𝐶𝑛(𝐼PET + 𝐼CT)))) (2) 

 𝐹𝐶 = 𝐶𝑎𝑡(𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹𝐷) (3) 

 𝐹𝐶1 = 𝐶1×1(𝐹𝐶),   𝐹𝐶2 = 𝐶3×3(𝐹𝐶),    𝐹𝐶3 = 𝑇𝐶3×3(𝐹𝐶2) (4) 

 𝐹𝑜𝑢𝑡 = (𝐹𝐶1 − 𝐹𝐶2) ⊙ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐶2 ⊙ 𝐹𝐶3) (5) 

where Cn(∙), C1×1(∙), C3×3(∙) denote convolutional operations, DC(∙) denotes dilated con-

volutional operation, BN denotes batch normalization operation, σ(∙) denotes ReLU 

function, Pmax(∙) denotes maximum pooling, Cat(∙) denotes concatenate operation, 

TC(∙) denotes transposed convolutional operation, + denotes addition of the 
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corresponding elements of an array, and ⊙ denotes multiplication of the corresponding 

elements of an array, n∈[1,5]. 

3 Results and Discussion 

3.1 Dataset and Preprocessing 

The private dataset contains 99 lung lymph nodes from 51 patients from the Department 

of Nuclear Medicine, The First Hospital of China Medical University. All lung lymph 

node regions are manually outlined by experienced radiologists as the ground truth, and 

all lymph node metastases are determined by pathological puncture examination. The 

age of the patients ranged from 38 to 75 years, and the number of men and women was 

28 and 23 cases, respectively. The PET image planar voxel size is 2.03642 mm × 

2.03642 mm × 5.00 mm, the planar resolution is 400 × 400; the CT image planar voxel 

size is 0.976563 mm × 0.976563 mm × 2.00 mm, the planar resolution is 512 × 512. 

Each case had early-phase PET images and CT images, and delayed-phase PET images 

and CT images. The early-phase images were taken normally after the patient was in-

jected with 18F-FDG, and the delayed-phase images were taken about two hours after 

the early-phase medical images were taken. 

The data is preprocessed, and the CT images are converted to Hu value truncation 

and then normalized. For PET images, resampling is first performed to rigidly align 

with CT images, which are truncated to SUV values and then standardized. PET and 

CT slices containing the lymph nodes are cropped to 64×64 centered on the lymph 

nodes according to the ground truth. A total of 959 sets of images (each set includes 4 

images) are finally used for the experiments. 720 sets are used for the training set and 

239 sets for the test set in the experiments. And data enhancement is performed on the 

data in the training set, with horizontal and vertical flips and random rotation of the 

images at certain angles. 

3.2 Experimental Details and Evaluation Metrics 

This work is conducted on an NVIDIA GeForce RTX 3060 12G server under Windows 

11 operating system, based on the PyTorch framework. The Adam optimizer is set with 

a learning rate of 0.0001. The batch size is set to 8. The image data are preprocessed as 

described in Section 3.1. The network input size is 64 × 64, the network task is to de-

termine whether the region is a lung lymph node metastasis, and the network output 

results in probability values for both categories. The experiments use loss functions 

including BCELoss, KLDivLoss, and total Loss, see Eq.s (6)-(8). 

 𝐿𝐵𝐶𝐸 = 𝑦𝑛 × ln(𝑥𝑛) + (1 − 𝑦𝑛) × ln(1 − 𝑥𝑛) (6) 

 𝐿𝐾𝐿𝐷 = 𝑦𝑛(𝑙𝑜𝑔𝑦𝑛 − 𝑥𝑛) (7) 

 𝐿Total = 𝛼 ∗ 𝐿𝐵𝐶𝐸 + (1 − 𝛼) ∗ 𝐿𝐾𝐿𝐷 (8) 
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Where xn denotes the predicted value, and yn denotes the actual label. In the network, 

the enhancement feature FAug enters the fully connected layer to get the prediction result 

Pred1 which is used with the true label to calculate LBCE using Eq. (6). The microenvi-

ronmental feature FWB-D enters the fully connected layer to get the prediction result 

Pred2 which is used with Pred1 which is treated as a weak label, to calculate LKLD using 

Eq. (7). LBCE and LKLD set weights and sum to get LTotal, see Eq. (8). The network works 

best when α = 0.7 by experiment. 

3.3 Comparison with Other Methods 

The lymph node metastasis recognition model based on the metabolic enhancement of 

lymph nodes and their microenvironment proposed in this paper is compared with other 

advanced networks. In ResNet50 [16], Densenet121 [17], DPN92 [18], Res2Net50 

[19], Conformer [21] and Next-ViT [22] methods, multi-modal early-phase fusion im-

ages are concatenated with multimodal delayed-phase fusion images using a single 

branch channel input network for experiments. The results are shown in Table 1. 

Table 1. Comparison with other advanced methods. 

Method Accuracy F1-score Precision Recall 

ResNet50 [16] 0.741 0.740 0.750 0.757 

Densenet121 [17] 0.745 0.729 0.738 0.725 

DPN92 [18] 0.778 0.768 0.771 0.766 

Res2Net50 [19] 0.741 0.725 0.733 0.721 

Conformer [21] 0.766 0.752 0.760 0.747 

Next-ViT [22] 0.766 0.764 0.767 0.777 

LNMER-Net (Ours) 0.845 0.836 0.848 0.829 

Note: The best results are shown in bold black font. 

As can be seen in Table 1, our proposed network can achieve the best results in terms 

of Accuracy, F1-score, Precision, and Recall, whether compared with ResNet50 [16], 

Densenet121 [17], DPN92 [18] base network, or Res2Net50 [19], Conformer [21], 

Next-ViT [22] the latest methods are improved compared with each other. The pro-

posed method deeply explores the data features of the multi-modal single-phase and 

single-modal multi-phase and designs multi-modal feature extraction modules and met-

abolic attenuation channels that facilitate lesion identification and enhance lymph node 

features and microenvironmental features closely around lesion features. The current 

SOTA methods are poorly adapted to the data characteristics and lesion features and 

thus perform generally in the problem of lung lymph node metastasis identification. 

3.4 Ablation Experiments 

In this paper, a multi-channel branching network is designed to input multi-modal 

early-phase fusion images, multi-modal delayed-phase fusion images, and single-
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modal metabolic attenuation information into the network separately, and the extracted 

early-phase lymph node features, delayed-phase lymph node features, and microenvi-

ronmental features are enhanced in cascade. The early-phase and delayed-phase images 

extract information to enhance the lymph node features, and the multi-phase PET image 

difference highlights the lymph node metabolic attenuation information to enhance the 

microenvironmental features. For multi-modal images, PET images contain metabolic 

information but have low resolution, while CT images can more clearly represent the 

lymph nodes and the surrounding texture information, and the two are fused and input 

to the network to enhance the lymph node features. So, the MRFO is proposed to extract 

the shape and texture information from the corresponding fused images by using multi-

scale receptive fields and to obtain the underlying anatomical structure features and 

enhance the lymph node features by filtering the feature information that is more deci-

sive for classification through spatial optimization of the corresponding operations. In 

this paper, ablation experiments are performed on the network model, and the results 

are shown in Table 2 and Table 3. 

Multi-channel Ablation Experiment. In this section, this work performs experimental 

comparisons by varying the number of branches of the input network, with the network 

branches cascaded before the fully connected layer. The experimental results for the 

single-branch network are shown in the first three rows of data in Table 2, the data for 

the two-branch network results are shown in rows 4-6 of Table 2, and the last row shows 

the experimental results using three channels. 

Table 2. Ablation experiments of LNMER-Net under different channel inputs 

Method 
Channel 

Accuracy F1-score Precision Recall 
WB D WB-D 

1 Channel 

√ - - 0.766 0.759 0.757 0.760 

- √ - 0.736 0.713 0.735 0.708 

- - √ 0.669 0.592 0.697 0.609 

2 Channels 

√ √ - 0.828 0.814 0.839 0.805 

√ - √ 0.770 0.744 0.785 0.736 

- √ √ 0.791 0.772 0.800 0.764 

3 Channels (Ours) √ √ √ 0.845 0.836 0.848 0.829 

Note: The best results are indicated in bold black font, √ indicates that the branch is added to the network, and - 

indicates that the branch is not used. 

From the data in the table, we can see that the network simultaneously sets up a 

multi-modal early-phase feature fusion channel, multi-modal delayed-phase feature fu-

sion channel and single-modal metabolic decay channel to extract and enhance lymph 

node features and microenvironmental features to make the network fit better, and the 

best results can be obtained with Accuracy reaching 0.845 and F1-score reaching 0.836. 

Using the single-modal metabolic decay channel alone is the least effective, which in-

dicates that the lymph node features extracted from multi-modal fused images are es-

sential for image classification and that the network is not sufficient to accurately clas-

sify images by considering only learning the metabolic decay information in single-
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modal. The experimental results using dual channels show that enhancing lymph nodes 

or microenvironmental features improves the network effect. 

MRFO Ablation Experiment. In this section, ResNet50 with three branch inputs is 

chosen as the baseline network (BL) for this work, and the results are shown in row 1 

of Table 3. Each channel is selected to add or not an MRFO block before entering the 

residual block. Adding one MRFO block to the network results in rows 2-4 of Table 3, 

adding two MRFO blocks results in rows 5-7 of Table 3, and adding three MRFO 

blocks results in row 8 of Table 3. 

Table 3. MRFO ablation experiment 

Method 
Channel 

Accuracy F1-score Precision Recall 
WB D WB-D 

ResNet50 (BL) - - - 0.749 0.745 0.745 0.753 

BL+MRFO (1) 

√ - - 0.770 0.744 0.785 0.736 

- √ - 0.799 0.777 0.819 0.767 

- - √ 0.766 0.752 0.760 0.747 

BL+MRFO (2) 

√ - √ 0.762 0.761 0.801 0.794 

- √ √ 0.824 0.820 0.818 0.826 

√ √ - 0.845 0.836 0.848 0.829 

BL+MRFO (3) √ √ √ 0.736 0.724 0.727 0.723 

Note: The best results are indicated in bold black font, √ indicates that the module is added to the network, and - 

indicates that no action is taken. 

As can be seen from the data in the table, using MRFO in the two channels of multi-

modal early-phase feature fusion and multi-modal delayed-phase feature fusion in the 

network gives the best results, with a 10.4% improvement in Accuracy and a 9.6% 

improvement in F1-score compared to BL. The priority of using MRFO in different 

branches also varies, with the most significant improvement in the multi-modal delay-

phase channel. It is worth noting that using MRFO in all three channels becomes less 

effective instead. The reason is that for the single-modal metabolic decay channel, small 

and fine structural information needs to be learned from the input data, while the multi-

modal early-phase channel and multi-modal delayed-phase channel have complex input 

fusion image information and need to extract lymph nodes and their background infor-

mation. MRFO combines large receptive fields with small receptive field convolution 

kernels, which is more conducive to the extraction of structural information of complete 

large regions, and therefore the use of MRFO in multi-modal early-phase passages and 

multi-modal delayed-phase passages is more effective in enhancing the network. 

In summary, the method proposed in this paper has good performance in all metrics, 

but there is still some space for improvement before it is put into clinical application. 

Therefore, to improve the accuracy and stability of the model performance, we need to 

further explore the definition of a priori features, effective feature extraction, and fea-

ture optimization, to build a model with excellent performance and realize intelligent 

diagnosis in the real sense. 
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4 Conclusion 

In this paper, based on a multi-phase PET/CT dataset, the proposed network extracts 

multi-modal early-phase lymph node features, multi-modal delayed-phase lymph node 

features, and microenvironmental features. Applying the multi-modal multi-phase data, 

this method enhances the lymph node features while significantly enhancing the tiny 

fine microenvironmental features by metabolic attenuation information to assist the net-

work in better classification. The multi-modal data combine the advantages of PET 

images containing metabolic information and CT images containing texture infor-

mation to provide the network with more comprehensive and complementary features 

of lymph nodes. The proposed MRFO extracts complementary features from multi-

modal fused images uses multi-receptive fields to extract more image contextual fea-

tures, captures both global and local information of images, and optimizes shallow fea-

tures to extract more effective deep semantic features. The experimental results show 

that the method in this paper improves by 6.7%, 6.8%, 7.7%, and 6.3% over the optimal 

method in Accuracy, F1-score, Precision, and Recall. In comparison with ResNet50 

[16], with the addition of the proposed metabolic decay channel and MRFO module 

alone, Accuracy is improved by 7.9% and 9.6%, respectively. Therefore, the proposed 

network is superior and promising for research in lung lymph node classification. 
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