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Abstract. The concept of few-shot learning allows users to train models with a 

limited amount of data while still achieving a high level of generalization. 

Impressive techniques like meta-learning and continual learning models have 

shown remarkable performance in model development. However, there are still 

two crucial challenges to overcome: unstable performance and catastrophic 

forgetting, especially when dealing with new tasks while retaining knowledge 

of previous tasks. To tackle these issues, a new approach called Enhanced 

Model-Agnostic Meta-learning (EN-MAML) has been proposed. It combines 

the adaptable adaptation characteristics of meta-learning with the stable 

performance of continual learning. By employing this method, users can 

efficiently and effectively train their models even with limited data, ensuring 

stability throughout the process. Experimental results demonstrate that EN-

MAML outperforms other state-of-the-art models across multiple real datasets, 

achieving superior accuracy, exhibiting more stable performance, and 

converging faster. 

Keywords: Machine Learning, Deep Learning, Meta-learning, 
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1   Introduction 

Model-agnostic meta-learning (MAML) [1] is noteworthy not only for its 

simplicity but also for its effectiveness. On the other hand, continual learning excels 

in few-shot learning tasks by learning new tasks without forgetting previous ones. 

Gradient episodic memory for continual learning (GEM) [2] addresses the issue of 

catastrophic forgetting through quadratic programming and even achieves positive 

forward transfer (FWT), where the model learns new tasks better by leveraging 

previous task knowledge, as well as positive backward transfer (BWT), where the 

learning of current tasks benefits previous ones. 

Figure 1 illustrates the training accuracy of MAML with three different seeds, 

revealing its unstable performance during training. To tackle this instability problem 

identified by Antoniou et al. [3], we combine MAML with GEM. By employing a 

GEM quadratic program originally used to prevent catastrophic forgetting in Lopez-
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Paz and Ranzato [2], we store meta-gradients to adjust the updating direction, 

facilitating the learning of previous episodes. Consequently, our method, EN-MAML, 

aims to achieve effects similar to FWT and BWT while accelerating model 

convergence. 

Furthermore, we address the stability-plasticity dilemma [4] and reconsider the 

features of meta-learning and continual learning in the context of few-shot learning. 

As a result, we design our approach to effectively combine the learning processes for 

current tasks and previous tasks. This allows our model to possess both adaptability 

to new tasks and improved stability. 

 

 
Fig. 1. Unstable performance of MAML.  

2   Related Work 

Recent studies based on this concept have become more complicated and delicate 

in the embedding process [8, 14] and even utilize data-dependent initializations to 

adapt well in a low-dimensional latent space. By designing an object detection 

network with a weight generator based on an attention mechanism, the method of 

Gidaris and Komodakis [5] also uses a representation space to acquire different task 

knowledge.  

The method proposed in Finn et al. [1] can be applied to different kinds of model 

structures to promote their generalization ability. To explore a set of appropriate 

initial parameters, the approach proposed in Nichol and Schulman [6] reduces the 

cost of calculating in the differentiating process. Moreover, Antoniou et al. [3], 

presents various modifications of Finn et al. [1] and analyzes the framework of 

MAML. For few-shot image classification, Chen et al. [7] proposed a meta-learning 

system to achieve time and resource efficiency and to generalize unknown feedback 

datasets. Kuo et al. [8] alleviated catastrophic forgetting, prevented base learners 

from inducing overfitting, and achieved strong robustness. 

It is difficult to train a model to generalize well with little data, incremental 

learning aims to gradually learn via continuous training. Incremental learning is 

divided into task-based incremental learning [9] and class-based incremental learning 

[10]. Hu et al. [10] found that data replay is a reliable technology. Using the causal 

effect of introducing old data in an end-to-end manner, old data can be stored in a 



 

 

CIL network to prevent forgetting without actually storing them. 

Many continual learning approaches use extra memory to store data for the purpose 

of alleviating catastrophic forgetting [11]. In addition to storing data to ensure that 

networks remember these previous tasks, there is a network designed to generate data 

to review the knowledge that has been learned previously [12]. Rather than 

determining the important parameters, Lopez-Paz and Ranzato [2] focused on 

modifying the angle of the model’s gradient and even proposed the metrics of 

forward transfer and backward transfer to evaluate the performance of continual 

learning approaches. 

From our observation, and as noted in Riemer et al. [9], the classic stability-

plasticity dilemma [4] concept seems to match the characteristics of meta-learning 

and continual learning. The main concept of Riemer et al. [9] is easing the 

interference between transfer and retention with gradient alignment, which was 

proposed in Lopez-Paz and Ranzato [2]. The stability-plasticity dilemma mentioned 

in Abraham and Robins [4] means that there is a regulated balance between synaptic 

stability and synaptic plasticity. Meta-learning presents great adaptation to 

nonstationary task distribution. However, the problems of training instability and 

overfitting occurred in Finn et al. [1]. Most continual learning approaches enhance 

network stability, such as by adding more constraints when updating parameters [2] 

[18] or using a buffer to store data [11]. The features of these approaches allow 

continual learning to correspond to the stability of the stability-plasticity dilemma. To 

maintain the information of previous tasks, Lopez-Paz and Ranzato [2] compares the 

gradients of different tasks to confirm that updating the direction will not lead to 

serious forgetting.  

Several approaches have crossed the border between meta-learning and continual 

learning and leveraged the advantages of each to overcome their shortcomings. Gai et 

al. [13] uses meta continual learning to mitigate forgetting with gradient episodic 

memory. De Lange et al. [14] compared 11 state-of-the-art continual learning 

methods and 4 baselines. Riemer et al. [9] combines meta-learning with GEM [2] so 

that networks become generable based on past and future task distributions. Our 

approach focuses on addressing the problem of MAML pointed out by Antoniou et al. 

[3] with GEM. In our work, we migrate the GEM quadratic program into the MAML 

framework to make MAML more stable and to fit it with other gradient-based meta-

learning approaches to enhance their performance. 

3   Proposed Model : EN-MAML 

From Fig. 2, the entire EN-MAML framework can be segmented into two parts. On 

the left side, EN-MAML produces fast weights to adapt to a new batch of tasks and 

produces a meta-gradient for the current batch. We see this process as “learning” 

because EN-MAML acquires novel knowledge from new tasks that consist of unseen 

categories of images. When EN-MAML completes the learning process, it produces 

the meta-gradient according to the loss from the current batch. On the left side, EN-



 

MAML computes the batch of tasks stored in the meta-gradient buffer to generate the 

meta-gradient for the previous batch. We see this process as “reviewing” because the 

model performs previous tasks again with its current parameter state. In the next step, 

the meta-gradient from the current batch will be modified by the process of continual 

learning, which integrates the gradient from the previous batch in computation to 

migrate the knowledge the model learned previously. Finally, EN-MAML can reduce 

the conflict updating caused by the nonstationary environment and update its 

parameters in a more stable way. 

In the original MAML, the outer-loop updating generates the gradient, which comes 

from the loss of an entire batch. These gradients contain information about cross-task 

knowledge, which is the key to allowing networks to acquire the ability to continue 

promoting adaptation to different tasks. In our work, we called this kind of gradient a 

“meta-gradient”, and it has a significant impact on the directing network in exploring 

more adaptive initialization parameters. 

Therefore, networks trained on few-shot learning usually have to face difficulty in 

dealing with conflicts between gradients’ directions. Accordingly, we assume that this 

issue causes the problem of MAML training instability. In our observation of other 

learning methods for handling this issue, we found that GEM, an approach proposed for 

continual learning, focuses on adjusting the updating gradient angle to make the network 

learn the new task without forgetting previous tasks, and [9] also proved its effectiveness. 

Conflicts between gradients will occur in the following situation: 

 
𝜕𝐿(𝑓𝜃(𝑥𝑖),𝑦𝑖)

𝜕𝜃
∙

𝜕𝐿(𝑓𝜃(𝑥𝑗),𝑦𝑗)

𝜕𝜃
< 0, (1) 

(𝑋𝑖 , 𝑦𝑖) and (𝑋𝑗 , 𝑦𝑗) are different sampled data points from different tasks. When the 

inner product of the gradients is negative, it means that the network loses knowledge of 

the previous task if the parameters are updated for the current task. To avoid forgetting, 

GEM updates the parameter only if the following constraint is satisfied: 
𝜕𝐿(𝑓𝜃(𝑥),𝑦)

𝜕𝜃
∙

𝜕𝐿(𝑓𝜃(𝑥𝑀),𝑦𝑀)

𝜕𝜃
≥ 0, (2) 

𝑀 is the buffer used to store the data from the observed task. 𝑥𝑀, 𝑦𝑀 indicate the 

images and labels stored in M. GEM uses a quadratic program to modify the updating 

gradients that originally violated this constraint. Most recent approaches utilize task 

memory buffers to store task-level data or gradients. However, we pay attention to the 

meta-gradient produced after the network learns all batch tasks. In other words, the 

information of the meta-gradient is at the batch level, which contains more varied and 

general task knowledge, and this property could be more likely to make MAML avoid 

overfitting. This is the reason why we store the meta-gradient in the buffer instead of the 

task-level gradient. In addition, the buffer replaces the oldest meta-gradient with the 

newest one. Thus, the network can prevent overfitting on certain tasks and can learn from 

the distribution. 

 



 

 

 
Fig. 2. The architecture of EN-MAML. 

We assume that there are n batches of tasks sampled from task distribution 𝑝(𝑇) in a 

training epoch. EN-MAML learns a new batch by performing inner updates and computes 

the meta-gradient of the current batch 𝑔𝑐. The current meta-gradient is modified by using 

(5) and the GEM quadratic program to compare it with other meta-gradients from the 

previous batch. After the gradient tuning process, we acquire the modified meta-gradient 

𝑔𝑐
′  that EN-MAML applies to outer-loop updates.  

To enhance training stability, EN-MAML calculates the loss not only from the tasks of 

the current batch but also from the tasks of the previous batch stored in the buffer. With 

the loss from learning and reviewing, we design EN-MAML to automatically decide how 

important the parts are, so there are trainable weights before the two losses. Therefore, 

EN-MAML can balance the stability-plasticity dilemma in different learning 

environments and training stages because it can adjust the attention that it gives to 

learning and reviewing. We use the cross-entropy loss function to calculate the loss of 

image classification, which is expressed by (6). The loss function of EN-MAML is 

expressed by (7). 

𝑙𝑐(𝑓𝜃(𝑥, 𝑦))  =  ∑ 𝑦

𝑥,𝑦~𝑇

𝑙𝑜𝑔𝑓𝜃(𝑥), (3) 

𝐿𝑡𝑜𝑡𝑎𝑙 =   𝑤𝑐 ∑  𝑙𝑐(𝑓𝜃(𝑥, 𝑦))

𝑇

𝑡=1

+  𝑤𝑝 ∑ 𝑙𝑝(𝑓𝜃(𝑥𝑀, 𝑦𝑀))

𝑇

𝑡=1

, (4) 

𝑤𝑐 is the weight used to represent how important EN-MAML considers the current 

batch of tasks to be, and 𝑤𝑝 is the weight that represents how much attention EN-MAML 

gives to reviewing the previous batch of tasks. 𝑙𝑐 is the loss from a task in the current 

batch, and 𝑙𝑝 is the loss from a task in the previous batch. 𝑀𝑒𝑚 is the meta-gradient 

memory buffer, where we store previous data to compute the previous meta-gradient. 

 



 

4   Performance Evaluation 

During our experimental evaluations, we utilize the well-established benchmarks in 

the field of few-shot learning: Omniglot [15] and Mini-ImageNet [16]. The Omniglot 

dataset comprises 1,623 handwritten characters, classified into 50 distinct letters. 

Each letter category contains 20 instances of handwritten symbols. In our 

experiments using Torchmeta, we divide the Omniglot dataset into three subsets: a 

training set with 1,028 classes, a validation set with 172 classes, and a testing set with 

423 classes. Traditionally, most few-shot learning methods utilize the first 1,200 

classes from the Omniglot dataset for training [3]. However, it has been 

acknowledged in previous research that preserving a few classes for validation 

purposes is crucial [3]. Therefore, we also allocate a portion of the dataset for 

validation to conduct our experiments effectively. Moving on to the Mini-ImageNet 

dataset in Torchmeta, each class consists of 600 instances, and the dataset 

encompasses 64 classes for training, 16 classes for validation, and 20 classes for 

testing. To enhance the datasets, we apply augmentation techniques such as rotating 

the images by 90 degrees and resizing them to 28 × 28 for Omniglot and 84 × 84 for 

Mini-ImageNet. 

4.1   Performance Comparison 

We compare the performance of different few-shot learning models under N-way 

K-shot experiments, which means that a task has images from N kinds of classes and 

that each class has K examples. As well as MAML, we demonstrate the performance 

of EN-MAML with other famous few-shot learning models proposed in recent years: 

Siamese Nets [17], Matching Nets [16], Neural Statistician: [18], Memory Mod: [19]. 

Meta networks: [20], and Reptile: Reptile [6]. 

 
Table 1.  Accuracy of Omniglot for 5-way classification 

Omniglot 5-way few-shot classification 

Model Accuracy 

 1-SHOT 5-SHOT 

Siamese Nets 97.3% 98.4% 

Matching Nets 98.1% 98.9% 

Neural Statistician 98.1% 99.5% 

Memory Mod. 98.4% 99.6% 

MAML 98.25% 98.85% 

Reptile 95.30% 98.80% 

EN-MAML 98.77% 99.67% 



 

 

 

Evaluate EN-MAML by performing N-way K-shot experiments on the Omniglot 

and Mini-ImageNet datasets. First, the results of 5-way few-shot classification on 

Omniglot show that EN-MAML reaches state-of-the-art performance and improves 

accuracy compared to MAML, as shown in Table 1. Compared to the performance of 

MAML, EN-MAML improves the accuracy by approximately 0.52%, as shown in 

Table 1. 

For the Mini-ImageNet datasets, EN-MAML also demonstrated dramatically 

higher performance on 5-way classification experiments, as shown in Table 2. EN-

MAML improves the accuracy by approximately 5.17% compared to the MAML 

performance from our replication in terms of accuracy in the Mini-ImageNet 5-way 1-

shot setting. For the Mini-ImageNet 5-way 5-shot setting, EN-MAML is 

approximately 5.45% more accurate than MAML. 

 

Table 2.  Accuracy of Mini-ImageNet 5-way classification 

Mini-ImageNet 5-way few-shot classification 

Model Accuracy 

 1-SHOT 5-SHOT 

Siamese Nets 47.8% 63.66% 

Matching Nets 43.56% 55.31% 

Neural Statistician 48.60% 63.09% 

Memory Mod. 49.21% 65.42% 

MAML 49.38% 66.55% 

Reptile 46.81% 62.37% 

EN-MAML 54.55% 72% 

 

4.2   Stability and Accuracy Comparison with MAML 

To fully compare and analyze the performance of EN-MAML and MAML, we 

demonstrate how the models’ testing performance improves as the number of epochs 

increases. We show all performance curves from the experiments mentioned in the 

above sections. First, we perform 5-way and 20-way classification, both with 1 shot 

and 5 shots in the Omniglot dataset. Additionally, we perform 5-way classification 

with 1 shot and 5 shots in Mini-ImageNet. Moreover, we reproduce MAML with the 

above experimental protocol setting. Second, we perform model training stability 

experiments to examine whether our method alleviates the unstable training problem 

proposed in Antoniou et al. [3]. 

We can observe that the testing accuracy of EN-MAML starts to surpass that of 

MAML when the model has been trained for approximately 40 epochs, as shown in 



 

Fig. 3(a). Our method provides more stable validation accuracy, which is one of our 

method’s objectives. In Fig. 3(b), we can see that EN-MAML maintains higher 

validation accuracy at all times. Therefore, the combination of meta-learning and 

continual learning is actually positive in terms of enhancing the stability of MAML. 

Fig. 4 shows that EN-MAML can not only improve the accuracy of the original 

MAML but also enhance the training stability. EN-MAML obtains higher accuracy 

from earlier epochs to the end of the testing experiment in Fig. 4(a), and this result 

can also be observed in the validation experiment in Fig. 4(b). 

For the Mini-ImageNet experiments, we can observe that the performances of both 

EN-MAML and MAML become more unstable than in the tests on the Omniglot 

dataset. Both testing accuracy and validation accuracy fluctuate dramatically because 

the difficulty of the dataset and the few-shot setting makes the models unable to 

capture general features easily. 

 
(a)                               (b) 

Fig. 3. Comparison of EN-MAML and MAML in the 5-way 1-shot setting on the 

Omniglot dataset: (a) Validation accuracy; (b) Testing accuracy. 

 

 
(a)                               (b) 

Fig. 4. Comparison of EN-MAML and MAML in the 5-way 5-shot setting on the 

Omniglot dataset: (a) Validation accuracy; (b) Testing accuracy. 

However, EN-MAML still reaches the highest accuracy in the 5-way 1-shot setting 

in Fig. 5(a) and maintains an equivalent level of validation accuracy in Fig5(b). 

Additionally, EN-MAML outperforms MAML most of the time in the 5-way 5-shot 

setting on Mini-ImageNet in Fig. 6(a). EN-MAML starts to surpass it and obtains 

higher accuracy in the middle epochs. In contrast, MAML shows more stable 



 

 

performance in validation accuracy in this setting. We analyzed the results, and we 

will discuss this phenomenon in the next section. To summarize all the experimental 

results on Omniglot and Mini-ImageNet, our observation is that EN-MAML either 

improves the testing accuracy or promotes validation accuracy. EN-MAML 

progresses on at least one metric and keeps the other metric at an equivalent level. On 

the Omniglot dataset, EN-MAML demonstrates dramatic improvement in validation 

accuracy. In contrast, EN-MAML shows greater enhancement in testing accuracy in 

all Mini-ImageNet experiments. 

 
(a)                               (b) 

Fig. 5. Comparison of EN-MAML and MAML in the 5-way 1-shot setting on the 

Mini-ImageNet dataset: (a) Validation accuracy; (b) Testing accuracy. 

 

 

(a)                               (b) 
Fig. 6. Comparison of EN-MAML and MAML in the 5-way 5-shot setting on the 

Mini-ImageNet dataset: (a) Validation accuracy; (b) Testing accuracy. 

4.3   The Effectiveness of Combining Meta-learning with 

Continual Learning 

As shown in Figs. 3 and 4, EN-MAML can truly improve the stability of the 

validation accuracy, which means a more reliable and stable training process in all of 

the Omniglot experimental settings. However, the positive effect of combining meta-



 

learning with continual learning is not only stability promotion but also enhancement 

of the model in terms of reaching higher testing accuracy, which is shown more 

clearly in Figs. 4, 5 and 6. From our experimental observation, the modified meta-

gradient, which is generated from quadratic programming to maintain the meta-

gradient information from previous batches, can have approximately the same effect 

as the FWT proposed in Lopez-Paz and Ranzato [2].  

 

(a)                               (b) 
Fig. 7. Comparison of EN-MAML and EN-MAML without the previous-current 

vector in the 5-way 1-shot setting on the Mini-ImageNet dataset: (a) Validation 

accuracy; (b) Testing accuracy. 

 

(a)      (b) 

Fig. 8. Comparison of EN-MAML and EN-MAML without the previous-current 

vector in the 5-way 5-shot setting on the Mini-ImageNet dataset: (a) Validation 

accuracy; (b) Testing accuracy. 

From Figs. 7 and 8, we can observe that there is an obvious performance gap between 

the original EN-MAML and EN-MAML without considering dynamic weights. 

Particularly in the 5-way 1-shot setting, the original EN-MAML can improve both its 

testing accuracy and validation accuracy with fewer data provided. With the mechanism 

of weighted current knowledge and weighted knowledge, we find a possible solution to 

overcome the stability-plasticity dilemma. 

In our experiment, we set the initial values of the importance of current tasks and 

previous tasks to 0.9 and 0.1, respectively. As the epoch increases, we find that the 

network gradually pays more attention to both the current task and previous tasks 



 

 

under the 5-way 1-shot setting on Mini-ImageNet in Fig. 9(a). In contrast, the 

network pays less attention to both the current task and previous tasks under the 5-

way 5-shot setting on Mini-ImageNet in Fig. 9(b). 

EN-MAML can increase the attention to previous and current knowledge to 

overcome the limitation of the few training data.  And EN-MAML can determine 

the current learning problem that is the most influential in the experimental setting 

and dynamically adjust the importance of different kinds of learning knowledge. 

In addition, different classes in our experiment can be sampled repeatedly, so a 

gradually better-trained EN-MAML can learn the seen classes better after it acquires 

metalevel knowledge from other batches of tasks. We take this effect to be nearly the 

same as that of the BWT proposed in Lopez-Paz and Ranzato [2] EN-MAML absorbs 

new metalevel knowledge with the MAML framework, digests new information with 

the FWT effect, and then acquires a better understanding of previously learned 

knowledge. This is the reason why EN-MAML can concurrently promote stability 

and testing accuracy, which is demonstrated in most of our experimental settings. 

 

(a)      (b) 

Fig. 9. The weight change in the current-past vector: (a) Current and past vector 

change under the 5-way 1-shot setting on Mini-ImageNet; (b) Current and past vector 

change under the 5-way 5-shot setting on Mini-ImageNet. 

 

Notably, even under Mini-ImageNet, a more difficult dataset, and a smaller batch 

size setting, which means the meta-gradient will be generated from fewer tasks, EN-

MAML can outperform MAML in most of the experiments in Figs. 5 and 6. We also 

observe that EN-MAML still shows FWT and BWT effects, even under a harder 

learning environment. As the epoch grows, higher performance also appears more 

frequently. As we mentioned in the above paragraphs, EN-MAML needs time to 

accumulate powerful meta-gradient memory, and the phenomenon illustrated in Figs. 

5 and 6 is demonstrated more clearly. In these figures, we find that EN-MAML 

outperforms MAML more dramatically and reaches the highest accuracy in later 

epochs. 



 

5   Conclusions 

Presenting a groundbreaking technique called EN-MAML, our approach merges 

meta-learning and continual learning by utilizing the meta-gradient property 

alongside quadratic programming. This innovative method offers enhanced stability 

during model training, outperforming MAML in terms of testing accuracy across 

various experimental scenarios. Our experimental results highlight the potential of 

combining meta-learning and continual learning to achieve simultaneous 

improvements in flexibility and stability. Looking ahead, the field of few-shot 

learning can further investigate additional strategies to leverage the unique 

characteristics of meta-learning and continual learning, effectively addressing the 

stability-plasticity dilemma and pushing the boundaries of research in this domain. 
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